Browse > Article
http://dx.doi.org/10.7840/kics.2013.38C.12.1207

Location Estimation for Multiple Targets Using Expanded DFS Algorithm  

Park, So Ryoung (가톨릭대학교 정보통신전자공학부 통신신호처리 연구실)
Noh, Sanguk (가톨릭대학교 컴퓨터정보공학부 지능형시스템 연구실)
Abstract
This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots in consideration of obstacles. In order to match up targets with measured azimuths, to add to the depth-first search (DFS) algorithms in free-obstacle environment, we suggest the expanded DFS (EDS) algorithm including bypass path search, partial path search, middle level ending, and the supplementation of decision metric. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the error rate of estimated location, mean number of calculating nodes, and mean distance between real coordinates and estimated coordinates of the proposed algorithms.
Keywords
location estimation; cooperative surveillance; distributed targets; tree search algorithm;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. S. Ryu, "Improved target localization using line fitting in distributed sensor network of detection-only sensor," J. Inst. Electron. Eng. Korea (IEEK), vol. 49, no. 9, pp. 362-369, Sep. 2012.   과학기술학회마을   DOI   ScienceOn
2 H. J. Kwon, T. W. Bae, B. I. Kim, S. H. Lee, Y. C. Kim, S. H. Ahn, and K. I. Sohng, "Shape extraction of near target using opening operator with adaptive structure element in infrared images," J. Korean Inst. Commun. Inform. Sci. (KICS), vol. 36, no. 9, pp. 546-554, Sep. 2011.
3 M. Valera and S. A. Velastin, "Intelligent distributed surveillance systems: a review," IEE Proc. Vision, Image, Signal Process., vol. 152, no. 2, pp. 192-204, Apr. 2005.
4 J. H. Lee, M. C. Kim, S. W. Cho, Y. Jin, and D. Lee, "Performance comparison of LOB-based emitter localization algorithms," J. Korea Inst. Military Sci. Technol. (KIMST), vol. 12, no. 4, pp. 437- 445, Aug. 2009.   과학기술학회마을
5 M. Gavish and A. J. Weiss, "Performance analysis of bearing-only target location algorithms," IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3, pp. 817-828, July 1992.   DOI   ScienceOn
6 S. R. Park and S. Noh, "Location estimation for multiple targets using tree search algorithms under cooperative surveillance of multiple robots," J. Korean Inst. Commun. Inform. Sci. (KICS), vol. 38, no. 9, pp. 782-791, Sep. 2013.   과학기술학회마을   DOI   ScienceOn
7 M. Lee, Y. Lee, I. Song, and S. Yoon, "A novel decoding scheme for MIMO signals using combined depth-and breadth-first and tree partitioning," J. Korean Inst. Commun. Inform. Sci. (KICS), vol. 36, no. 1, pp. 37-47, Jan. 2011.   과학기술학회마을   DOI   ScienceOn
8 J. Ahn and K. Kim, "Lower bound on expected complexity of depth-first tree search with multiple radii," IEEE Commun. Lett., vol. 16, no. 6, pp. 805-808, June 2012.   DOI   ScienceOn