• Title/Summary/Keyword: 방오도장

Search Result 5, Processing Time 0.031 seconds

강관등표 도장방식 연구

  • Gwak, In-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.88-91
    • /
    • 2018
  • 국내 연안에 설치된 항로표지(등부표,등대 등) 대부분이 철근 콘크리트 형식으로 제작 설치 되어 있다. 초기 구조물 제작시 파손 및 전단, 염해에의 한 콘크리트의 부식에 대한 인식 부족으로 일반적인 색상표시 도장방식으로 마감처리 하여 설치 하였다. 이로 인하여 콘크리트의 파손, 도장부의 탈락으로 인하여 매년 유지보수비용이 투입되고 있는 실정이다. 또한 부식진행 후 현장여건상 보수도장이 취약하고 보수 후에도 내구성 부족(방오수명 2년~3년)으로 지속적인 관리가 필요하다. 그러므로 항로표지의 신규 설치시 강관조 형식의 설계적용이 요구되며 강관조의 가장 큰 취약점인 부식(녹)에 대한 방오방법의 연구가 지속적으로 진행되고 있다. 또한 기 설치된 해상 금속구조물의 경우 보수작업시 장비반입, 작업시간, 작업여건 등이 비말대, 간만대에 따라 변동 하므로 원칙적인 보수가 불가능한 상황에 있다. 그러므로 초기 제작시 부식에 대한 방오도장이 시행 되어야 한다. 기 설치된 콘크리트 구조물 등표는 원칙적인 구조보강 검토 후 염해, 중성화 방지 도장을 시행 하여야 하며 이에 대한 연구를 진행하고 있다.

  • PDF

A Study on the Physical Properties of Silicone Type Marine growth Antifouling Coatings (실리콘계 해양생물 부착 방지 도료의 도막 물성 고찰)

  • Kim, Seong-Kil;Choi, Dae-Won;Han, Won-Heui;Kwon, Hyuk-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.134-135
    • /
    • 2013
  • In this study, the physical properties and antifouling were investigated to make the Marine growth antifouling coatings by blending of synthesized silicone resin and pigment with a low surface tension. To examine the film properties and foul release of the prepared coatings, film specimens were prepared with the prepared coatings and anti corrosion coatings. The test results showed that the silicone type antifouling coatings had very excellent antifouling properties rather than any other coatings because of the coating films had followed the low surface tension and elasticity, and prevention of adhesion for marine growth and mechanical adhesions.

  • PDF

An Analysis of Hydrophobic Characteristics of Concrete Surfaces by Antifouling Coating Agent using Cellulose Nonofiber and Alkyl Ketene Dimer (셀룰로오스 나노 섬유와 AKD를 활용한 방오 코팅제에 의한 콘크리트 표면의 소수 특성 분석)

  • Nag-Seop Jang;Chi-Hoon Noh;Hongseob Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.120-129
    • /
    • 2023
  • Marine structures are subject to damage not only from sea salt but also from the adhesion of marine microorganisms and suspended particles, which cause additional damages. In order to prevent this, periodic coating is employed in the case of vessels to maintain the necessary performance. However, it is true that periodic coating is difficult for concrete or steel support structures, and there is a risk of marine environmental pollution. In this study, authors developed an anti-fouling coating agent using eco-friendly materials that possess hydrophilic cellulose nanofibers and AKD(alkyl ketene dimer). To achieve a homogeneous mixture, the content of cellulose nanofibers was fixed at 1 %, and AKD, distilled water, and waste glass were mixed using a digital mixer and homogenizer. The contact angle of the prepared coated surface was observed to be over 130°, indicating sufficient performance even in a water droplet flow test with a 15° slope, suggesting self-cleaning capability. Furthermore, through the analysis of viscosity characteristics at different temperatures, it was confirmed that the application is feasible at room temperature. Microstructure analysis also verified that the coating agent is uniformly applied to the concrete surface.

Study on the Drag Performance of the Flat Plates Treated by Antifouling Paints (방오 도료가 도장된 평판에 대한 항력 성능 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo;Cho, Sang-Rae;Kim, Kyung-Rae;Chung, Young-Uok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • In the present study, the flat plate model test method is developed to evaluate the skin friction of the marine coating in the cavitation tunnel. Six-component force balance is used to measure the profile drag of the flat plate and strut. LDV(laser Doppler velocimetry) technique is also employed to evaluate the drag and to figure out the reason of the drag reduction. The flow velocities above the surface can be used to assess the skin friction, combined with direct force measurement. Since the vortical structure in the coherent turbulence structure influences on the skin friction in the high Reynolds number regime, the interaction between the turbulence structure and the surface wall is paying more attention. This sort of thing is important in the passive control of the turbulent boundary layer because the skin friction can't be determined only by wall condition. As complicated flow phenomena exist around a paint film, systematic measurement and analysis are necessary to evaluate the skin friction appropriately.

Flow Resistance of Plane Nettings for Net Cages (우리 그물용 평면 그물감의 유수저항)

  • KIM Tae-Ho;KIM Dae-An;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2001
  • In order to make clear the resistance of plane nettings u,sed widely in constructing net cages, the resistance R taken by $R=kSU^2$, where S was the wall area of nettings, U the flow velocity, and k the resistance coefficient, was measured in a circulating water channel by using nylon Raschel nettings and PE trawler-knotted nettings coated with anti-fouling paint or not and then the properties of coefficient k were investigated. The mesh size L and the angle $\phi$ between two adjacent bars was given by the function of Reynolds number ${\lambda}U/v$ in the region of ${\lambda}U/v<180$, i. e., $$k=350(\frac{\lambda U}{v})^{-0.25}$$.where $\lambda$ was the representative size of nettings expressed as $$\lambda=\frac{{\pi}d^2}{2L\;sin\;2{\phi}}$$On the other hand, the coefficient k was almost fixed between 92 and 102 ($kg{\cdot}s^2/m^4$) in the region of ${\lambda}U/v{\geq}180$ and varied according to the ratio $S_n/S$ of the total area $S_n$ of nettings projected to the plane perpendicular to the water flow to the wall area S of nettings, i.e., it was given by $$k=98.6(\frac{S_n}{S})^{1.19}$$ regardless of the coating of paint.

  • PDF