DOI QR코드

DOI QR Code

셀룰로오스 나노 섬유와 AKD를 활용한 방오 코팅제에 의한 콘크리트 표면의 소수 특성 분석

An Analysis of Hydrophobic Characteristics of Concrete Surfaces by Antifouling Coating Agent using Cellulose Nonofiber and Alkyl Ketene Dimer

  • 장낙섭 (경상국립대학교 건설시스템공학과) ;
  • 노치훈 (경상국립대학교 건설시스템공학과) ;
  • 오홍섭 (경상국립대학교 건설시스템공학과)
  • Nag-Seop Jang (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Chi-Hoon Noh (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Hongseob Oh (Department of Civil and Infrastructure Engineering, Gyeongsang National University)
  • 투고 : 2023.04.11
  • 심사 : 2023.05.31
  • 발행 : 2023.06.30

초록

해양구조물은 염분에 의한 손상뿐만 아니라 해양미생물과 부유물질의 착상 등에 의해 추가적인 손상이 발생하게 되며, 이를 억제하기 위하여 선박등의 경우에는 주기적인 도장을 통하여 필요성능을 유지하고 있다. 그러나 콘크리트 또는 강재지지구조는 주기적인 도장이 어렵고 해양환경의 오염위험이 존재하는 것이 사실이다. 본 연구에서는 친수성 셀룰로오스 나노섬유와 AKD를 사용하여 소수성능을 갖는 친환경 재료를 사용하여 방오코팅제를 개발하였다. 균질한 배합을 위해 나노섬유의 함량을 1 %로 고정하고, AKD, 증류수와 폐유리를 디지털 교반기와 호모게나이져로 교반 제작하였다. 제작된 코팅제의 접촉각은 130°이상으로 나타났으며, 15°기울기의 물방울 흐름시험에서도 충분한 성능을 갖추고 있어 자가세척기능을 갖춘 것으로 판단된다. 또한 온도에 따른 점성 특성 분석을 통해 상온에서 시공이 가능한 것을 확인하였으며, 미세구조 분석을 통해 콘크리트표면에 코팅제가 균질하게 도포되는 것을 확인하였다.

Marine structures are subject to damage not only from sea salt but also from the adhesion of marine microorganisms and suspended particles, which cause additional damages. In order to prevent this, periodic coating is employed in the case of vessels to maintain the necessary performance. However, it is true that periodic coating is difficult for concrete or steel support structures, and there is a risk of marine environmental pollution. In this study, authors developed an anti-fouling coating agent using eco-friendly materials that possess hydrophilic cellulose nanofibers and AKD(alkyl ketene dimer). To achieve a homogeneous mixture, the content of cellulose nanofibers was fixed at 1 %, and AKD, distilled water, and waste glass were mixed using a digital mixer and homogenizer. The contact angle of the prepared coated surface was observed to be over 130°, indicating sufficient performance even in a water droplet flow test with a 15° slope, suggesting self-cleaning capability. Furthermore, through the analysis of viscosity characteristics at different temperatures, it was confirmed that the application is feasible at room temperature. Microstructure analysis also verified that the coating agent is uniformly applied to the concrete surface.

키워드

과제정보

본 연구는 한국연구재단 이공분야기초연구사업(NRF-2018R1D1A1B07049278) 및 국토교통과학기술진흥원 국토교통기술촉진사업(21CTAP-C164040-02)의 지원에 수행되었습니다.

참고문헌

  1. Almeida, E., Diamantino, T.C., Sousa, O. (2007). Marine paints: the particular case of antifouling paints, Progress in Organic Coatings, 59(1), 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017
  2. Bae, J.W., Park, G.S., Ru, M.L., Park, G.H. (2019). Antifouling effect of an ultrasonic system operating at different frequencies, Journal of the Korean Society of Marine Environment & Safety, 25(5), 609-616 [in Korean]. https://doi.org/10.7837/kosomes.2019.25.5.609
  3. Chen, H., Yang, J., Hu, Z., Zheng, B., Sun, J., Wo, Q., ... Zhu, R. (2019). Effects of AKD sizing on the morphology and pore distribution properties of OCC fibers, Journal of Nanomaterials, 2019, 1-6. https://doi.org/10.1155/2019/9490602
  4. Cho, S.H., Ryu, S.N., Hwang, W.B., Yoon, B.S. (2013). Anti-fouling propery of hydrophobic surfaces in sea water, Journal of the Korean Society for Marine Environment and Energy, 16(2), 82-87 [in Korean]. https://doi.org/10.7846/JKOSMEE.2013.16.2.82
  5. Cho, S.W., Hwang, S.Y., Park, J.Y., Oh, D.S. (2021). Nanocellulose and nanochitin-based all-organic biopolymer composites, Polymer Science and Technology, 32(1), 15-20 [in Korean].
  6. Flores-Vivian, I., Hejazi, V., Kozhukhova, M.I., Nosonovsky, M., Sobolev, K. (2013). Self-assembling particle-siloxane coatings for superhydrophobic concrete, ACS Applied Materials & Interfaces, 5(24), 13284-13294. https://doi.org/10.1021/am404272v
  7. Goo, S.I., Park, H.J., Yook, S.Y., Park, S.Y., Youn, H.J. (2018). Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, Journal of Korea TAPPI, 50(6), 34-41 [in Korean]. https://doi.org/10.7584/JKTAPPI.2018.12.50.6.34
  8. Hong, S.K., Lee, K.Y. (2013). Superhydrophobic nano patterning techniques for enhanced performance of naval underwater vessels, Journal of Ocean Engineering and Technology, 27(2), 114-120 [in Korean]. https://doi.org/10.5574/KSOE.2013.27.2.114
  9. Isogai, A. (2013). Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, Journal of Wood Science, 59(6), 449-459. https://doi.org/10.1007/s10086-013-1365-z
  10. Jang, N.S., Kim, T.K., Oh, H.S. (2021). A basic study on the marine anti-fouling coating using cellulose nanofiber, Journal of the Korean Recycled Construction Resources Institute, 9(4), 469-477.
  11. Kalia, S., Boufi, S., Celli, A., Kango, S. (2014). Nanofibrillated cellulose: surface modification and potential applications, Colloid and Polymer Science, 292(1), 5-31. https://doi.org/10.1007/s00396-013-3112-9
  12. Khalil, H.A., Bhat, A.H., Yusra, A.I. (2012). Green composites from sustainable cellulose nanofibrils: a review, Carbohydrate Polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  13. Kim, S.H., Lee, J.Y., Jo, H.M., Lee, Y.H. (2020). Study on the multilayer barrier coating using cellulose nanofibrils and internal sizing agent, Journal of Korea TAPPI, 52(6), 47-55 [in Korean]. https://doi.org/10.7584/JKTAPPI.2020.12.52.6.47
  14. Kim, Y., Oh, H. (2021a). Microstructure analysis of cement composite containing PMHS emulsion to improve hydrophobic, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(1), 25-32 [in Korean].
  15. Kim, Y., Oh, H. (2021b). Microstructure and strength characteristic of hydropobic cement mortar with silan admixture, Journal of the Korean Recycled Construction Resources Institute, 9(2), 127-134.
  16. Kumar, S., Chauhan, V.S., Chakrabarti, S.K. (2016). Separation and analysis techniques for bound and unbound alkyl ketene dimer(AKD) in paper: a review, Arabian Journal of Chemistry, 9, 59-71. https://doi.org/10.1016/j.arabjc.2012.04.019
  17. Muzenski, S., Flores-Vivian, I., Sobolev, K. (2015). Hydrophobic engineered cementitious composites for highway applications, Cement and Concrete Composites, 57, 68-74. https://doi.org/10.1016/j.cemconcomp.2014.12.009
  18. Nechyporchuk, O., Belgacem, M.N., Bras, J. (2016). Production of cellulose nanofibrils: a review of recent advances, Industrial Crops and Products, 93, 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
  19. Oh, H. (2018). A study on the fundamental mechanical properties of hydrophobic cementeous mortar using silane admixtures, Journal of the Korean Recycled Construction Resources Institute, 6(2), 79-86.
  20. Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils, Progress in Polymer Science, 88, 241-264. https://doi.org/10.1016/j.progpolymsci.2018.09.002
  21. Siro, I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459-494. https://doi.org/10.1007/s10570-010-9405-y
  22. Zinge, C., Kandasubramanian, B. (2020). Nanocellulose based biodegradable polymers, European Polymer Journal, 133, 109758.