• Title/Summary/Keyword: 방열 파이프

Search Result 29, Processing Time 0.024 seconds

Study on Thermal Performance of Multiple LED Packages with Heat Pipes (히트 파이프를 이용한 다중 LED 패키지의 방열 성능 연구)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.569-575
    • /
    • 2011
  • Since the high heat generation of LED chips can cause a reduction in lifetime, degradation of luminous efficiency, and variation of color temperature, studies have been carried out on the optimization of LED packaging and heat sinks. Recently, LED packages have been applied to high-power lights such as car headlamps or street lights, and it is known that cooling using only free convection is not at all efficient. Thus, in this study, a heat pipe with forced convection was examined for the optimization of the cooling performance in high-power LED lights. In addition, optimal on-off control of a fan was adopted to increase the fan lifetime, since the lifetime of the fan is generally shorter than that of the LEDs.

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.

A study on Experiments for High Power LED Lights with Heat Pipes (Heat pipe를 이용한 고출력 LED 조명기기 개발을 위한 실험적 연구)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.941-943
    • /
    • 2010
  • 근래 LED 조명기기 연구는 출력이 낮은 조명기기에서 고출력 전원을 이용한 고휘도 제품 개발로 바뀌는 추세이다. 고출력을 이용할 경우 단순히 히트싱크 형상, PCB 배치 및 물성 변경을 통한 방열문제 해결 방법으로는 LED 조명기기의 수명감소 문제를 해결하는데 한계가 있다. 따라서 방열능력을 더욱 향상시킬 수 있는 히트파이프(heat pipe)의 필요성이 대두되었다. 본 연구에서는 히트파이프를 이용해 고출력 LED 조명기기 개발을 위한 연구를 수행하였다.

  • PDF

Finite Element Simulation of a Porthole Die Extrusion Process for Manufacturing Aluminum Heat Radiation Pipe (알루미늄 방열 파이프의 생산 목적의 포트홀 금형 압출공정의 유한요소해석)

  • Lee, M.C.;Cho, J.H.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.458-461
    • /
    • 2008
  • We carry out non-steady state finite element simulation of a porthole extrusion process for manufacturing a radiation pipe under isothermal assumption. It is assumed that welding takes place at the moment that the material contacts the plane of symmetry. Welding phenomena are revealed by observing the contacting mechanism of the material passed through the portholes. It is emphasized that mesh density control and intelligent remeshing during welding process govern the solution accuracy and the program applicability. AFDEX 3D is employed.

  • PDF

Water Cooling Pipe Structure for Heat-Dissipation of HEV Inverter System (HEV용 인버터의 방열을 위한 수냉식 배관구조)

  • Kim, Gyoung-Man;Woo, Byung-Guk;Lee, Yong-Hwa;Kang, Chan-Ho;Chun, Tae-Won;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • To dissipate the heat generated from the switching devices in the inverter system of HEV, the water cooling structure is proposed. The bolt type cooling structure has a problem such as water leakage for high pressure of water, therefore the proposed cooling structure applied pipe structure in the heat sink. The heat dissipation characteristics for various structures of water channel and distance between heat source and water channel was analyzed through the simulation. heat dissipation effect for two types of water cooling structures was investigated. Based on the simulation results, two types of water cooling system for 30kW inverter system of HEV were manufactured and the heat dissipation effect was verified.

Study on Thermal Efficiency according to Configuration Change and Contact Resistance of Solar Collector with Single Evacuated Tube-type (단일진공관 태양열집열기의 형상변화 및 접촉저항에 따른 집열효율 연구)

  • Choi, Bo-Won;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.189-195
    • /
    • 2014
  • The use of solar energy among renewable energy tends to increase because of its infinity and cleanness of resources. Even though the consumption rate of solar energy in our country is still low, however, in recent years, the research for solar energy have been widely conducted due to policy support of government. This study was performed to investigate the efficiency of heat collection using solar collector with single evacuated tube-type. As the results, the temperature of radiation fin for solar collector with single evacuated tube-type was lower in spite of high temperature of heat pipe compared that of double evacuated tube-type. In order to increase the efficiency of heat collection, it was confirmed that the loss of heat collection due to contact resistance as well as performance improvement for solar collector should be decreased.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.