• Title/Summary/Keyword: 방사선 장해

Search Result 106, Processing Time 0.03 seconds

A Model for Protective Behavior against the Harmful Effects of Radiation based on Medical Institution Classifications (의료기관 형태별 방사선장해 방어행위 모형)

  • Han, Eun-Ok;Kwon, Deok-Mun;Dong, Kyung-Rae;Han, Seung-Moo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.157-162
    • /
    • 2010
  • This study surveyed a total of 1,322 radiation technologist in health care institutions throughout Korea. This is a comparative study conducted on the levels of protective behavior against the harmful effects of radiation in heath care institutions which indicated that university hospitals and general hospitals showed higher level of protective behavior than for medical practitioners. This study found university hospitals have the following 7 characteristics to manage protective behavior against the harmful effects of radiation, protective environment, self-efficacy by distinction of task, self-efficacy, expectation of the protective behavior, the number of patients, level of the education related to the protection of the harmful effects of radiation and protective attitude. While general hospitals have the following 3 characteristics protective environment, expectation of the protective behavior and protective attitude. Hospitals have the following 4 characteristics protective environment, expectation of the protective behavior, protective attitude and self-efficacy. and medical clinics have characteristics protective environment.

Implementation of Radiation Damage in Vitro Model using Swine Skin (돼지피부를 사용한 방사선 체외 장해모델 구현연구)

  • Jung, Hongmoon;Won, Doyeon;Jeong, Dong Kyung;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2016
  • The study of radiation-hazard in the human skin tissue is carried out by direct irradiating to experimental animals. The influences of a radiation to the animal's skin tissue are analyzed from this experiment. However, this also accompanies losses in terms of both time and economy. In this study, we simulated human tissue by using a swine skin tissue. The depth of the swine skin tissue for the experiment is determined, and the amount of the direct radiation below this skin depth is analyzed numerically. The amount of the radiation occurred by exposure below the skin tissue can be inferred. Moreover, it is possible to use only cells effectively and animal experiments to analyze the body-hazard by radiation.

Efficiency Evaluation of Irradiated on Mouse Calvarial Model by BMP-2 (전리방사선이 조사된 쥐의 두개골상의 BMP-2 효용성 연구)

  • Jung, Hongmoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.811-817
    • /
    • 2019
  • Radiation-therapy causes the adverse radiation effect. It is called osteoradionecrosis. A protein-therapy is carried out in order to cure osteoradionecrosis. The typical method of the protein-therapy is using BMP-2. Considering to bone damage, it is more important that maintains enough to circumstance regeneration for osteoblast differentiation on damage site of bone. Thus, this study is on a tissue regeneration to cure radiation critical damage. I observed that the formation of new regeneration bone by injection of collagen sheet BMP-2 on irradiated mouse. Consequently, I examined new bone formation with collagen sheet BMP-2 on irradiated mouse after 8weeks. Therefore I suggested that using collagen sheet BMP-2 which can be good for new bone regeneration effect on radiation side effect area.

Hematological Change in Mice Injected with Radiosensitizer and Irradiated with High-dose Radiation (방사선 증감제를 투여한 마우스에 고 에너지 방사선 조사 후 혈액학적 변화에 관한 연구)

  • Ji, Yeon-Sang;Dong, Kyung-Rae;Jung, Myo-Young;Park, Yong-Soon;Dong, Cha-Bun;Ryu, Young-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.357-363
    • /
    • 2009
  • The current population of elderly is increasing and the with an extended average lifespan, the frequency of cancerous occurrences have also increased, with these increases and the increase in radiotherapy for cancer patients, recognitions of harm and importance have become known. This article was known tumor treatment of patients with hematopoietic disorder by doing a comparative study on the changes in blood cells caused by the acute effects of trace dose to high dose of radiation exposed to mice. According to the sensitizer injection may give rise to harm to the components of peripheral blood. This material needs to be considered when for treating tumor patients and the risks of hematopoietic harm and believe that radiation therapy will be reasonable.

Hematological change in mice injected with radiosensitizer and irradiated with high-dose radiation (증감약제를 투여한 마우스에 고에너지 방사선 조사 후 혈액학적 변화에 관한 연구)

  • Jung, Myo-Young;Ji, Yeon-Sang;Dong, Kyung-Rae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1136-1140
    • /
    • 2009
  • The current population of elderly is increasing and the with an extended average lifespan, the frequency of cancerous occurrences have also increased, with these increases and the increase in radiotherapy for cancer patients, recognitions of harm and importance have become known. This article was known tumor treatment of patients with hematopoietic disorder by doing a comparative study on the changes in blood cells caused by the acute effects of trace dose to high dose of radiation exposed to mice. According to the sensitizer injection may give rise to harm to the components of peripheral blood. This material needs to be considered when for treating tumor patients and the risks of hematopoietic harm and believe that radiation therapy will be reasonable.

  • PDF

Study on the Radiation Dose about Skin Thickness of Rat (For Radiation Damage Tissue Engineering) (쥐의 피부두께에 따른 선량연구)

  • Jung, Hongmoon;Won, Doyeon;Kim, Hyeongyun;Jung, Jaeeun;Choi, hyeun-woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.375-379
    • /
    • 2016
  • A rat is the most common experimental animal used for the realization of the radiation injury model. The certain thickness of rat skin was prepared by peeling off a rat skin. Radiation level was measured by using this rat skin. Also, The schematic of the formula was made that can predict the radiation absorbed dose (RAD) as a function of the thickness of the rat skin. Consequently, we will provide the RAD information in the realization of in-vitro experimental model regarding the rat's skin thickness by applying the formulas. Moreover, the results from this study can be effectively used for the in-vitro experiment of the rat subcutaneous tissue which was exposed to radiation.