• Title/Summary/Keyword: 발열반응

Search Result 558, Processing Time 0.027 seconds

Coal Gasification characteristics in an Internally Circulating Fluidized bed (내부순환유동층에서의 석탄 가스화 반응 특성)

  • 김용전;이종민;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.15-18
    • /
    • 1995
  • 내경 0.1 m, 높이 0.9 m 의 draft tube 를 갖는 직경 0.3 m, 높이 2.7 m 인 내부순환유동층가스화 반응기에서 생성가스분리대를 설치하여 가스화구역에서 생성된 생성가스를 분리하여 중열량가스를 얻었다. 석탄공급량 4.3 - 8.6 kg/hr, $O_2$/C 의 비 0.25 - 0.35, $H_2O$/C 의 비 0.75 - 1.35 의 조업변수 변화조건에서 생성가스의 조성과 발열량이 측정되었다. 반응 온도가 증가함에따라 H$_2$ 와 CO가 증가하고 $CO_2$$N_2$는 감소하여 생성가스 발열량이 10 - 11.5 MJ/㎥ 으로 증가하였다.

  • PDF

Pyrolysis of Waste Tire in a Fluidized Bed (유동층을 이용한 폐타이어의 열분해)

  • 김정래;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.92-95
    • /
    • 1993
  • 실험실 규모의 유동층 반응기(0.8 m H $\times$ 0.08 m I.D.) 에서 반응온도(700 -80$0^{\circ}C$), 유동화속도(1.5 - 3 Umf)의 영향에 따른 생성물의 수율, 생성가스의 조성, 생성가스의 발열량의 변화를 질소 분위기하에서 조사하였다. 반응온도를 700 에서 850 $^{\circ}C$로 증가시킬 때 촤의 수율은 36% 정도로 온도에 따라 큰 차이를 보이지 않은 반면 가스의 수율은 온도가 증가함에 따라 22 %에서 800 $^{\circ}C$까지 30%가량 증가하다 그 이상의 온도에서는 증가하지 않았다. 또한 수소와 메탄은 온도가 증가함에 따라 그 생성량이 증가하는 반면 에탄과 프로펜은 감소하였으며 단위 부피당 가스의 발열량은 감소하였다.

  • PDF

Methanation of syngas on Ni-based catalyst with various reaction conditions (석탄 합성가스를 이용한 온도 및 압력변화에 대한 메탄화 반응 특성)

  • Kim, Suhyun;Yoo, Youngdon;Ryu, Jaehong;Byun, Changdae;Lim, Hyojun;Kim, Hyungtaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.1-129.1
    • /
    • 2010
  • 석탄가스화로부터 얻어진 합성가스는 CO, $H_2$가 주성분으로, 그 자체를 연료로 사용하여 발전을 하거나 또는 적절한 정제, 분리 및 합성을 통해 다양한 원료물질을 생산할 수 있다. 이러한 석탄의 청정 사용 기술은 최근의 에너지 분야에서 많은 관심을 불러일으키고 있는 고유가 현상 및 석유자원 고갈에 대비할 수 있는 현실적인 방법의 하나로 여겨지고 있다. 석유를 대체할 에너지원으로서 석탄을 이용하는 다양한 응용 방법 중의 하나로 가스화 반응을 통해 발생하는 합성가스를 이용한 SNG 제조 공정을 들 수 있는데, 이는 석탄 등의 고체 시료를 이용하여 메탄이 주성분인 연료가스를 생산하는 것이다. SNG(Synthesis Natural Gas 또는Substitute Natural Gas)는 합성천연가스 또는 대체천연가스로 불리어지는데 주로 석탄의 가스화를 통해 얻어진 합성가스(syngas 또는 synthesis gas)인 CO, $H_2$를 촉매에 의한 합성반응을 통해 얻을 수 있다. SNG 합성 반응(메탄화 반응)은 보통 수성가스 전환 공정과 가스 정제 공정을 거친 합성가스를 $CH_4$로 전환하는 것으로 석탄을 이용한 SNG 제조 공정에서 가장 핵심 공정인 메탄화 반응은 높은 발열반응으로 주로 니켈 촉매를 사용하며 $250{\sim}400^{\circ}C$에서 반응이 이루어진다. SNG 합성 반응은 공급되는 합성가스의 조성($H_2$/CO 비), 공급되는 합성가스의 유량과 반응기에 충진된 촉매의 부피와의 관계를 나타낸 공간속도, 반응온도 등의 조건에 따라 반응 특성이 달라질 수 있다. 가스화 반응을 통해 생성되는 합성가스를 이용한 SNG 합성반응(메탄화 반응)의 특성을 파악하기 위하여 Lab-scale 규모의 고정층 반응기를 이용하여 Ni 함량이 다른 2종류의 촉매를 대상으로 반응온도 및 압력에 따른 CO 전환율, $CH_4$ 선택도, $CH_4$ 생산성 변화를 파악하였다. 실험 결과 반응기의 온도가 350도 이상의 조건에서 CO 전환율은 99.8%이상, $CH_4$ 선택도는 90.7%이상으로 나타났으며, 공간속도가 2,000 1/h 이상의 조건에서는 $CH_4$ 생산성이 500 ml/g-cat, h을 만족하였다.

  • PDF

A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor (회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구)

  • Lee, Hyung-Sub;Yun, Hee-Chang
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study is to suggest the rupture disk design(size) and application at the two phase(gas-liquid) flow by runaway reaction at batch reactor. The definition of runaway reaction is abnormally exothermic reaction by the uncontrolled cooling water or deviated operating condition. As a result, the temperature of reactor is rapidly increasing. The causes of runaway reaction are either self-heating reaction or sleeper reaction. General methods of rupture disk size or safety valve are not suitable in the runaway reaction, because of temperature and pressure increasing rapidly in the reactor and the phases of relieving fluid is 2-phase flow. This study case of the reactor incident, the depressurization system such as safety valve and vent installed, however, the system did not relieved the pressure of reactor suitably. The orifice size of the safety valve were designed too small because the size had not been considered the phenomena and character of reaction. The batch reactor design should be considered by referring to the possibility of runaway reaction proposed in this study and the size of rupture disk design method considering 2-phase flow.

Thermodynamic Analysis of DME Steam Reforming for Hydrogen Production (수소제조를 위한 DME 수증기 개질반응의 열역학적 특성)

  • Park, Chan-Hyun;Kim, Kyoung-Suk;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.186-190
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by dimethyl ether steam reforming. Various reaction conditions of temperatures (300~1500 K), feed compositions (steam/carbon = 1~7), and pressures (1, 5, 10 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 550 K. An increase of steam to carbon ratio (S/C) in feed mixture over 1.5 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

The relationships between clinical variables and renal parenchymal disease in pediatric clinically suspected urinary tract infection (소아 요로 감염 및 의심 환아에서 신 실질 병변 및 방광요관 역류와 임상 변수와의 연관성)

  • Byun, Jung Lim;Lee, Sang Taek;Chung, Sochung;Kim, Kyo Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.222-227
    • /
    • 2010
  • Purpose : To evaluate the significance of clinical signs and laboratory findings as predictors of renal parenchymal lesions and vesicoureteral reflux (VUR) in childhood urinary tract infection (UTI). Methods : From July 2005 to July 2008, 180 patients admitted with a first febrile UTI at the Pediatric Department of Konkuk University Hospital were included in this study. The following were the clinical variables: leukocytosis, elevated C-reactive protein (CRP), positive urine nitrite, positive urine culture, and fever duration both before and after treatment. We evaluated the relationships between clinical variables and dimercaptosuccinic acid (DMSA) scan and voiding cystourethrography (VCUG) results. Results : VCUG was performed in 148 patients; of them, 37 (25.0%) had VUR: 18 (12.2%) had low-grade (I-II) VUR, and 19 (10.5%) had high-grade (III-V) VUR. Of the 95 patients who underwent DMSA scanning, 29 (30.5%) had cortical defects, of which 21 (63.6%) had VUR: 10 (30.3%), low-grade (I-II) VUR; and 11 (33.3%), high-grade VUR. Of the 57 patients who were normal on DMSA scan, 8 (14.0%) had low-grade VUR and 6 (10.5%) had high-grade VUR. The sensitivity, specificity, and positive and negative predictive values of the DMSA scan in predicting high-grade VUR were 64.7%, 69.9%, 33.3%, and 89.5%, respectively. Leukocytosis, elevated CRP, and prolonged fever ($36{\geq}$ hours) after treatment were significantly correlated with the cortical defects on DMSA scans and high-grade VUR. Conclusion : Clinical signs, including prolonged fever after treatment, elevated CRP, and leukocytosis, are positive predictors of acute pyelonephritis and high-grade VUR.

The Characteristics of Pt Micro Heater Using Aluminum Oxide as Medium Layer (알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 특성)

  • Chung, Gwiy-Sang;Noh, Sang-Soo;Choi, Young-Kyu;Kim, Jin-Han
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.400-406
    • /
    • 1997
  • The electrical and physical characteristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analyzed with increasing annealing temperature($400{\sim}800^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to $SiO_{2}$ and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin films was improved. But these properties of aluminum oxide and Pt thin films on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analyzed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater, active area was smaller size, Pt micro heater had better thermal characteristics. The temperature of Pt micro heater with active area, $200{\mu}m{\times}200{\mu}m$ was up to $400^{\circ}C$ with 1.5watts of the heating power.

  • PDF

The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS (DSC와 XPS를 통한 수분노화가 THPP 점화제에 미치는 영향 분석)

  • Oh, Juyoung;Kim, Yoocheon;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2019
  • Titanium hydride potassium perchlorate (THPP) is one of the commonly utilized pyrotechnic materials in aerospace industries. The current study elucidates the effects of hygrothermal aging on the combustion of THPP experimentally. First, applying the Differential Scanning Calorimetry (DSC) and isocoversional method, both the delay of reaction start and decrease in maximum reaction rate were observed. The kinetics parameters tended to fluctuate depending the thermal reaction or intermediate product formation of THPP. Also, the oxidants decomposition and fuel oxidation phenomenon were discovered by X-ray photoelectron spectroscopy (XPS). The experimental heat from DSC data were verified as reasonable by comparing with the theoretical heat obtained utilizing both THPP formulation from XPS and NASA Chemical Equilibrium with Applications (CEA). Both data had identical variation trend, which expecially had the highest heat value at 10 weeks aged sample.

Evaluation of the Exothermic Properties and Reproducibility of Concrete Containing Electro-conductive Materials (전기전도성 재료를 혼입한 콘크리트의 발열특성 및 재현성 평가)

  • Song, Dong-Geun;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2016
  • From 1990's, a study on the development of exothermic concrete, a concrete which electro-conductive material is mixed, has been proceeded. However, due to the difficulty of exothermic reproducibility of concrete specimen, the study has been unable to continuously carried out. Accordingly, this study was focused on developing an exothermic concrete for the purpose of snow-melting material. Cement paste and mortar specimens mixed with graphite, conductive metal powder and chemical admixture were made. The evaluation of exothermic performance and reproducibility was conducted under $-2^{\circ}C$ of low temperature. In addition, micro-chemical analysis was carried out to investigate a cause of exothermic reproducibility. As a test result, the specimen mixed with graphite and superplasticizer with air entrained showed the best exothermic performance and reproducibility. Through micro-chemical analysis, it is judged that polymer or methacrylic acid (MAA), the contents inside the superplasticizer with air entrained, gave exothermic reproducibility by generating the electrochemical reaction with graphite.