• Title/Summary/Keyword: 반응 모델링

Search Result 682, Processing Time 0.031 seconds

Modeling and Simulation on a Direct Esterification Reactor for PET Polymerization and energy analysis (PET 직접 에스테르화 중합 반응기의 모델링 및 시뮬레이션과 에너지적 분석)

  • 김주열;권태인;여영구
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.67-72
    • /
    • 2000
  • PET는 합성섬유, 필름, 음료수병, 성형 플라스틱 등의 다양한 용도를 가지고 있으며 특히 섬유 원료부분에서는 전세계의 약 40%이상을 차지하고 있는 상업적 입장에서 아주 중요한 소재이다.[1]그러나, PET 제조공정은 긴 반응시간과 높은 반응온도, 대용량의 다단계 공정시설을 필요로 하는 대표적인 에너지 다소비 공정으로서 현대의 치열한 고분자 제품의 시장경쟁 상황에서 에너지 투입량 감축을 위한 공정의 해석 및 개발과 그로 인한 생산원가의 절감이 필수적이다. 본 연구에서는 실제 공장에서 사용되는 단일 연속식 직접 에스테르화 반응기(CSTR Direct Esterification Reactor)를 모델링하고 Van Krevelen[2]의 Group contribution method로 계산된 올리고머의 열용량값을 이용하여 에너지 소모량을 계산하였다. 모델링 결과는 모두 실제 공장의 자료와 비교되었으며 가장 제어하기 쉬운 변수에 따른 반응물의 물성과 에너지 소모량을 분석하였다. 또한 압력이 일정한 조건 하에서 입력변화에 따른 반응기의 동적 모델링을 동시에 수행하였으며 투입에너지량과 반응기의 운전지표와의 관계를 분석하였다. 이러한 연구는 실제 공정분석과 최적화에 있어서 소모 에너지량을 고려한 보다 정확한 지표를 제시하고 에너지 사용의 효율성을 높이는 데 기여할 수 있다.

  • PDF

Comparison of Air Quality Modeling Results from Different Chemical Reaction Mechanisms (화학반응 메커니즘에 따른 대기질 모델링 결과 비교)

  • 이시혜;김영성;김진영;김용표
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.103-104
    • /
    • 2002
  • 가스상 물질만을 대상으로 하여도 대기 중에서 일어나는 화학반응은 20,000개를 넘고 관여하는 물질도 수천을 넘는다. 대기화학 반응이 대기질 모델링에 포함되기 시작한 이래 지난 20-30년간 이들 반응들의 특성을 보전하면서 모델링에서 취급이 가능한 형태로 축약하기 위한 노력이 계속되고 있다. 그러나 축약 자체가 불완전을 감수하면서 전체적인 효율을 추구하는 과정이기 때문에 관점에 따라 방법이 다를 수밖에 없고, 또한 실측 자료로써 메커니즘의 개발과 검증에 주로 이용되는 스모그 챔버 실험도 결국은 실제 대기 현상의 일부분을 대표한 것이기 때문에 메커니즘들은 각각 다른 특성을 지니게 되고 일정 부분 불완전함을 내포하고 있다. (중략)

  • PDF

Conventional Fluid Dynamics and CFD Modeling for the Systematic Analysis of the Inside Flow of the Fischer-Tropsch Packed Bed Reactor (전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링)

  • Kim, Hyunseung;Cho, Jaehoon;Hong, Gi Hoon;Moon, Dong Ju;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.65-77
    • /
    • 2016
  • Modeling for complex reacting flow in Fischer-Tropsch reactor is one of the challenges in the field of Computational Fluid Dynamics (CFD). It is hard to derive each and every reaction rate for all chemical species because Fisher-Tropsch reaction produces many kinds of hydrocarbons which include lots of isomers. To overcome this problem, after analyzing the existing methodologies for reaction rate modeling, non-Anderson-Schulz-Flory methodology is selected to model the detailed reaction rates. In addition, the inside flow has feature of multi-phase flow, and the methodologies for modeling multi-phase flow depend on the interference between the phases, distribution of the dispersed phase, flow pattern, etc. However, existing studies have used a variety of inside flow modeling methodologies with no basis or rationale for the feasibility. Modeling inside flow based on the experimental observation of the flow would be the best way, however, with limited resources we infer the probable regime of inside flow based on conventional fluid dynamics theory; select the appropriate methodology of Mixture model; and perform systematic CFD modeling. The model presented in this study is validated through comparisons between experimental data and simulation results for 10 experimental conditions.

Modeling of SBR Process for Nitrogen ]Removal Via Quadratic Polynomial (이차다항식을 이용한 질소제거 SBR공정의 모델링)

  • 김동원;박장현;이호식;박영환;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.145-148
    • /
    • 2003
  • 본 논문에서는 이차다항식을 이용하여 생화학적인 공정의 모델링을 행한다. SBR 반응조에서 질소제거를 위한 수처리 공정이 제시되었으며, 이 공정의 ORP값을 모델링하고 동정하기 위해 서로 다른 형태의 선형모델이 소개되었으며 결과를 비교하고 분석한다 시뮬레이션 결과로부터 합리적이고 효율적으로 모델링 될 수 있음을 검증한다.

  • PDF

Customer List Segmentation Using the Combined Response Modeling (결합 리스펀스 모델링을 이용한 고객리스트 세분화)

  • Eui-ho Seo;Kap-chel Noh;Eung-beom Lee
    • Asia Marketing Journal
    • /
    • v.1 no.2
    • /
    • pp.19-35
    • /
    • 1999
  • 데이터베이스 마케팅 전략을 수립하고 집행함에 있어서 고객에게 접근하기 위한 촉진 매체로써 직접우편(Direct Mail)과 텔레 마케팅 등의 직접반응매체를 주요 수단으로 하는 경우 이를 다이렉트 마케팅이라고 한다. 다른 마케팅 전략들과 마찬가지로 다이렉트 마케팅에서도 마케팅 자원이 효과적으로 사용될 수 있도록 고객 데이터베이스를 세분화하는 작업을 수행한다. 리스펀스 모델링(Response Modeling)은 다이렉트 마케팅분야에서 고객리스트를 세분화하고 각 세그멘트별로 고객의 반응(구매행위)을 예측하는 기법을 말하며 RFM(Recency, Frequency, Monetary), 로지스틱, 신경망은 리스펀스 모델링을 위해서 가장 널리 사용되고 있는 기법이다. 과거에 이들 방법은 고객 데이터베이스 전체에 단독 모델로 적용되어 왔으나 이러한 단독 모델을 고객 데이터베이스에 적용하는 것이 정당화 되려면 고객들이 동일한 방식으로 반응한다는 전제가 필요하다. 그러나 일반적으로 고객의 반응방식에는 상당한 이질성이 존재한다. 예컨대 직업, 나이, 소득, 성별 등이 같다고 해서 같은 구매패턴을 보이지는 않는다는 것이다. 즉 고객A의 구매행위는 회귀선에 의해서 잘 설명되는 반면에 고객B는 신경망이나 RFM으로 잘 설명될 수 있는 경우가 존재하는 것이다. 이러한 구매행위의 이질성을 반영하기 위해서 최근에는 두개 이상의 방법을 결합하여 사용하는 결합 리스펀스 모델링 방법도 시도 되어 왔다. 그러나 결합 리스펀스 모델링에 관한 기존 연구들은 상관관계가 낮은 모델들을 결합함으로써 세분화의 효과를 단독 모델을 사용할 때 보다 개선할 수 있다고는 하였으나 구체적으로 어떤 모델들이 서로 낮은 상관관계를 갖는지는 보여주지 못하였다. 본 논문에서는 RFM 방법을 모델 내에서 사용하는 변수와 이를 이용한 모델링 방법상의 차이로 인하여 다른 두 방법(로지스틱, 신경망)과 매우 낮은 상관관계를 갖는 방법으로 제시하고 RFM과 다른 두 방법간의 낮은 상관관계를 이용하여 결합하는 경우 모델의 예측효과를 상당히 개선할 수 있음을 사례분석을 통해서 보이고자 한다.

  • PDF

A study on the coal gasification modeling in an Entrained Flow Gasifier (분류층 반응기에서의 석탄가스화 모델링 연구)

  • Ju, Jisun;Chi, Junhwa;Chung, Jaehwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 석탄가스화기술은 매장량이 풍부하여 안정적인 공급이 보장되는 석탄을 이용함과 동시에 환경오염물질 감소라는 사회적 요구조건을 충족시키면서 화학제품, 석탄-가스화, 석탄-디젤화, 연료전지, 복합발전 등 다양한 분야에 응용이 가능한 장점이 있다. 특히 석탄가스화복합기술(Intergrated Coal Gasification Combined Cycle, IGCC)은 석탄을 고온, 고압하에서 가스화시켜 일산화탄소(CO), 수소($H_2$)가 주성분인 합성가스를 제조, 정제 후 가스터빈 및 증기터빈을 복합으로 구동하여 전기를 생산하는 친환경 차세대 발전기술로 주목을 받고 있다. 현재 IGCC 기술은 세계적으로 볼 때 상용화단계에 있고, 우리나라의 경우 한국형 IGCC 기술의 확보를 위한 연구사업이 진행중에 있다. 본 연구는 IGCC 발전플랜트의 발전효율을 결정하는 가장 중요한 부분이라 할 수 있는 가스화반응기의 모델링 기술을 개발하는 목적으로 진행되었다. 본 연구에서는 석탄가스화 반응기에서 발생하는 석탄의 휘발화와 Char의 표면반응 그리고 기상에서의 가스화반응등의 현상을 전산유체역학(Computational Fluid Dynamics)을 이용하여 모델링하는 방법론이 연구되었다. 해석을 위한 형상은 해석에 소요되는 시간을 줄이고, 형상이 해석결과에 미치는 영향을 줄이고자 2차원으로 구성하였다. 해석을 위한 수학적모델으로는 난류모델, 가스화반응모델, Lagrangian particle tracking, Char reaction 등을 포함하였고, 해석을 위한 Solver는 Fluent를 이용하였다. 모델링결과에 의해 예측되는 합성가스의 조성을 상용급 IGCC 가스화기의 운전결과와 비교해 본 결과 본 연구에서 설정한 모델로 예측되는 온도 및 가스농도가 실험치와 유사하게 나타남을 알 수 있었고 이를 통하여 본 연구에서 설정한 모델링방법이 적절함을 알 수 있었다.

  • PDF

Conceptual Geochemical Modelling of Long-term Hyperalkaline Groundwater and Rock Interaction (지구화학 모델을 이용한 장기간의 강알칼리성 지하수-암석의 반응 개념 모델링)

  • Choi, Byoung-Young;Yoo, Si-Won;Chang, Kwang-Soo;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Hyperalkaline groundwater formed by groundwater-cement components and its reaction with bedrock in a nuclear waste repository were simulated by geochemical modeling. The result of groundwater-cement components reaction showed that the pH of water was 13.3 and the precipitated minerals were Brucite, Katoite, Calcium Silicate Hydrate(CSH1.1), Ettringite, Hematite, and Portlandite. The result of interaction between such minerals and groundwater sampled in Gyeongju area also showed that the pH of groundwater reached 12.4. Interaction between such hyperalkaline groundwater and granite was simulated by kinetic model during $10^3$ years. This result showed that the final pH of groundwater reached 11.2 and the variation of pH was controlled by dissolution/precipitation of silicate and CSH minerals. Groundwater quality was also determined by dissolution/precipitation of silicate, CSH, oxide minerals. Our results show that geochemical modeling of long-term hyperalkaline groundwater and rock interaction can contribute to the safety assessment of engineered barrier by predicting geochemical condition in repository site.

  • PDF

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Modeling of Gasifier with PRO/II (PRO/II를 사용한 가스화기 모델링)

  • Kim, KwangSin;Joo, Yong-Jin;Kim, Mi Yeong;Kim, Si-Moon;Lee, Joongwon;Kim, Ki-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.2-131.2
    • /
    • 2010
  • 서부 발전 태안화력발전소에 건설 예정인 IGCC Demo plant의 설계 자료를 근거로 석탄 가스화기의 정상 상태 전산모사를 PRO/II를 사용하여 수행하였다. 석탄을 PRO/II가 받아들일 수 있는 성분으로 바꾼 후 가스화기를 버너와 가스화기 본체의 두 부분으로 나누어 모델링하였다. 버너는 단열조건의 Gibbs Reactor로 모델링하였다. 모사 결과 산소가 완전 소진될 때까지 반응이 진행되는 것을 확인하였다. 가스화기는 char gasification 반응은 kinetic reaction equation으로, gas phase reaction은 equilibrium reactor로 모사하는 알고리듬을 개발 하였으나 PRO/II의 기능에 한계가 있어 간단한 Gibbs Reactor로 모사하였다. 가스화기는 membrane wall에 의하여 냉각되는 것을 고려하여 $1550^{\circ}C$의 균일한 온도에서 반응이 일어나는 것으로 고려하였다. 전산 모사 결과 주요 성분의 조성이 실제 syngas의 조성과 5% 정도 오차가 있는 것으로 나타났다.

  • PDF