• Title/Summary/Keyword: 반응표면실험계획

Search Result 301, Processing Time 0.03 seconds

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method (다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계)

  • Kang, Hyun Su;Lee, Jeong Min;Kim, Youn Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.435-441
    • /
    • 2015
  • In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

Improvement of Rheological Properties of Silica Composites Employing Response Surface Methodology (반응표면분석법을 이용한 실리카복합재료의 레올로지 속성 개선)

  • Yim, Gie-Hong;Yang, Seung-Nam;Kim, Nam-Ki
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • The purpose of this study was improving the rheology properties of dentifrice by finding optimum binders polymer system which consists of carboxymethylcellulose (CMC), carbomer, and Mg/Al silicate. Response surface methodology (RSM) was employed to investigate the correlation between polymers and rheological properties of dentifrice and to optimize responses. Rheological properties were measured with oscillatory rheometer. As a result, it was identified that gel strength and yield stress were dependent on contents of CMC and carbomer and CMC caused long stringiness of dentifrice. And springness of dentifrice was dependent on contents of CMC and Mg/Al silicate. Optimum components proportion of polymers and silicate were obtained by responses optimization process. According to determined optimum components proportion, it was possible to observe a dentifrice with improved rheological properties.

Optimization of the Integrated Seat for Crashworthiness Improvement (일체형 시트의 충돌특성 개선을 위한 최적설계)

  • 이광기;이광순;박현민;최동훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.345-351
    • /
    • 2003
  • Due to increasing legal and market demands for safety in the automotive design process, the design of integrated seat is important more and mote because it should satisfy the conflict between stronger and lower weight for safety and environmental demands. In this study for crash simulations, the numerical simulations have been carried out using the explicit finite element program LS-Dyna according to the FMVSS 210 standard for safety test of seat. Since crash simulations are very time-consuming and a series of simulations that does not lead to a better result is very costly, the optimization method must be both efficient and reliable. As a result of that, statistical approaches such as design of experiments and response surface model have been successfully implemented to reduce time-consuming LS-Dyna simulations and optimize the safety and environmental demands together with nonlinear optimization algorithm. Design of experiments is used lot exploring the design space of maximum displacement and total weight and for building response surface models in order to minimize the maximum displacement and total weight of integrated seat.

Evaluation of Bending Strength for Ceramic Honeycomb Using Design of Experiments (실험계획법을 이용한 세라믹 허니컴의 굽힘강도평가)

  • Kim, Jong-Kyu;Baek, Seok-Heum;Cho, Seok-swoo;Shin, Soon-Ki;Joo, Won-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.379-384
    • /
    • 2006
  • Since the monolithic ceramic substrate was introduced for automotive catalytic converters, the durability of the substrate has been a continuing requirement to reduce the emission gas of vehicle. The substrate can occupy a volume as small as 82 $cm^3$ and as large as 8200 $cm^3$ to provide the required substrate for catalytic activity. The long-term durability varies with the size of the substrate from manufacture's point of view. Therefore This study presents that the response surface model using central composite design can explain size effect on the modulus of rupture in a cordierite ceramic monolithic substrate.

  • PDF

Chromaticity Analysis of Curcumin Extracted from Curcuma and Turmeric: Optimization Using Response Surface Methodology (강황과 울금으로부터 추출된 커큐민의 색도분석 : 반응표면분석법을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2019
  • This paper describes a methode to extract yellow pigment from curcuma and turmeric containing natural color curcumin whose target color indexes of L, a, and b were 87.0 7.43, and 88.2, respectively. The pH range and extraction temperature used for the reaction surface analysis method were from pH 3 to pH 7 and between 40 and $70^{\circ}C$, respectively for both natural products. A central synthesis planning model combined with the method was used to obtain optimal extraction conditions to produce the color close to target. Results and regression equations show that the color space and difference of curcuma and turmeric have the greatest influence on the value. In the case of curcuma, the optimum conditions to satisfy all of the response theoretical values of color coordinates of L (74.67), a (5.69), and b (70.08) were at the pH and temperature of 3.43 and $54.8^{\circ}C$, respectively. The experimentally obtained L, a, and b, values under optimal conditions were 72.92, 5.32, and 72.17, respectively. For the case of turmeric, theoretical numerical color coordinates of L, a, and b, under the pH of 5.22 and temperature of $50.4^{\circ}C$ were 82.02, 7.43, and 72.86 respectively. Whereas, the experiment results were L (81.85), a (5.39), and b (71.58). Both cases showed an error range within 1%. Therefore, it is possible to obtain a low error rate when applying the central synthesis planning model to the reaction surface analysis method as an optimization process of the dye extraction of natural raw materials.

Effect of Processing Parameters on the Densification of Carbon/Carbon Composite by Isothermal Low-Pressure Chemical Vapor Infiltration (등온 저압화학기상침투법에 의한 탄소/탄소 복합재료의 치밀화에 대한 제조공정변수의 영향)

  • Park, H.D.;Ahn, C.W.;Cho, K.;Yoon, B.Y.;Kim, K.S.
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1994
  • The effect of processing parameters, temperature, gas concentration, gas flow rate and pressure, were studied on the densification of carbon/carbon composites using a Robust design method in isothermal low-pressure chemical vapor infiltration with a gas system of $C_3H_8-N_2$ After one time of isothermal low-pressure chemical vapor infiltrat.ion, the bulk density of carbon/carbon composites in creased up to 1-9% and apparent porosity of the composites decreased down to 20-50%. ANOVA analysis of the experiment.al data revealed that the important parameters of isothermal lowpressure chemical vapor infiltration were temperature, gas concentration and gas flnw rate. 'There was almost no ~ f f e c t on densification by pressure and interaction between each parameters. In t, he present experimental conditions, the highest bulk density was obtained at $1100^{\circ}C$ temperature, 100% $C_3H_8$, concentration, 100 SCCM flow rate and 5 torr pressure.

  • PDF

Preparation Condition of Chitooligosaccharide by Cellulase using Response Surface Methodology (반응표면 분석법을 이용하여 Cellulase에 의한 키토산올리고당의 제조 조건 설정)

  • Joo Dong Sik;Lee Jung Suck;Kim Ok Seon;Cho Soon Yeoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.696-701
    • /
    • 2002
  • Optimal conditions for preparing of chitooligosaccharides from chitosan with cellulase was researched by response surface methodo-logy, Penicillium funiculosum derived cellulase was most effective for chitooligosaccharides production as the point of hydrolyzing activity and commercial utility. The result which measures the change of degrading ratio at time course, 10 hr reaction showed a exponential increase and after that time degrading ratio was not changed. The optimal conditions determined by response surface methodology with central composite design of total 26 species were $0.5\%$ of chitosan, 143 U enzyme, 49$^{\circ}C$ of reaction temperature, 13.2 hr of reaction time and pH 3.8. Major chitooligosaccharides produced from chitiosan on optimal conditions were dimer and trimer.

Optimization for Preparation of Malic acid-catalyzed Ginsenoside Rg3 by Response Surface Methodology (반응 표면 분석법을 이용한 홍삼 사포닌으로부터의 사과산 활용 진세노사이드 Rg3 전환 최적화)

  • Ki Seong Kim;Junseong Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • Malic acid-catalyzed transformation has been developed to produce ginsenoside Rg3 which is increasingly in demand as a functional ingredient. The optimization of the conversion of red ginseng saponin (RGS) to ginsenoside Rg3 by acid catalyzed transformation was carried out using Box-Behnken design (BBD) based on Response Surface Analysis (RSM). The main independent variables were malic acid concentration, temperature, and reaction time. Conversion of ginsenoside Rg3 was performed according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rg3 ranged from 1.548 mg/L to 4.558 mg/L, and the highest production was obtained under the condition of reacting 1% malic acid, 50 ℃ and 9h. Consequently, The independent variables affecting the production of ginsenoside Rg3 were identified in the following order: malic acid concentration, reaction time and temperature. In addition, it was confirmed that the interaction between malic acid concentration and reaction time had a greater influence than the temperature.

Production of Chiral Styrene Oxide by Microbial Enantioselective Hydrolysis Reaction (미생물 입체선택성 가수분해 반응을 이용한 광학활성 Styrene Oxide 생산)

  • 윤성준;이은열
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.630-634
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis, and various biological methods have been investigated for their production. In this work, the enantioselective resolution of racemic styrene oxide was investigated using Aspergillus niger sp. for the production of optically pure (S)-styrene oxide. The enantioselectivity and initial hydrolysis rates of the racemic substrate were highly dependent of the pH, temperature, and the volume ratio of cosolvent. Experimental sets of pH, temperature, and the volume ratio of cosolvent were investigated using a central composite experimental design, and reaction conditions were optimized by response surface analysis. The optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4%(v/v), respectively, and optically pure (S)-styrene oxide (>99% ee) was obtained at 35% yield using this microbial enantioselective hydrolysis reaction.

  • PDF

Optimizing Conditions for Streptomyces chibaensis J-59 Glucose Isomerase Production Using Response Surface Methodology (반응표면분석에 의한 방선균 Streptomyces chibaensis J-59 포도당 이성화효소의 생산 최적화)

  • Joo, Gil-Jae;Park, Heui-Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.101-110
    • /
    • 1996
  • Using response surface methodology(RSM), the various conditions(agitation speed, air flow, glucose concentration) in jar fermentor culture were investigated to find the optimum conditions for maximum enzyme production. Central-composite-design was used to control the variable constant in the experiment. The glucose isomerase production of Steptomyces chibaensis J-59 was mostly affected by the air flow rate and glucose concentration. The estimated optimum conditions were as follows: 1% birchwood xylan, 1.5% CSL, 0.1% $MgSO_4{\cdot}7H_2O$, 0.012% $CoCl_2{\cdot}6H_2O$, pH 7.0; air flow, 2.2vvm; agitation speed, 587rpm; glucose concentration, 0.586%. Experimental values(7.43GIU/ml) for the enzyme production obtained from the given optimum conditions had a almost resemblane to response values(7.67GIU/ml) predicted by the RSM. The jar fermentor culture by the RSM produced xylose isomerase about 2.7 times as much as the baffled flask culture.

  • PDF