Improvement of Rheological Properties of Silica Composites Employing Response Surface Methodology

반응표면분석법을 이용한 실리카복합재료의 레올로지 속성 개선

  • Yim, Gie-Hong (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Yang, Seung-Nam (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Nam-Ki (Department of Chemical Engineering, Sungkyunkwan University)
  • 임기홍 (성균관대학교 화학공학과) ;
  • 양승남 (성균관대학교 화학공학과) ;
  • 김남기 (성균관대학교 화학공학과)
  • Published : 2008.01.31

Abstract

The purpose of this study was improving the rheology properties of dentifrice by finding optimum binders polymer system which consists of carboxymethylcellulose (CMC), carbomer, and Mg/Al silicate. Response surface methodology (RSM) was employed to investigate the correlation between polymers and rheological properties of dentifrice and to optimize responses. Rheological properties were measured with oscillatory rheometer. As a result, it was identified that gel strength and yield stress were dependent on contents of CMC and carbomer and CMC caused long stringiness of dentifrice. And springness of dentifrice was dependent on contents of CMC and Mg/Al silicate. Optimum components proportion of polymers and silicate were obtained by responses optimization process. According to determined optimum components proportion, it was possible to observe a dentifrice with improved rheological properties.

본 논문은 실리카복합재료인 치약제의 결합제 역할을 하는 수용성 폴리머인 carboxymethylcellulose (CMC)와 carbomer, Mg/Al silicate의 최적의 조성 비율을 구하여 치약제의 레올로지 속성을 개선하는 데에 목적이 있다. 실험계획법 중 혼합물 반응표면분석법을 적용하여 응력, 겔 강도, 늘어짐, 탄성에 대해 oscillatory 레오미터로 측정하였다. 실험 결과 CMC와 carbomer는 치약제의 겔 강도와 응력에 많은 영향을 미치고, CMC는 치약제의 늘어짐을 초래하며, CMC와 Mg/Al silicate가 탄성에 도움이 된다는 사실을 규명하였다. 반응치 최적화를 통해 최적의 폴리머 및 silicate 조성비를 구하여 실험한 결과 개선된 레올로지 속성의 치약제를 확인할 수 있었다.

Keywords

References

  1. M. Pader, in Oral Hygiene Products and Practice, Marcel Dekker, New York, chap. 11 (1988)
  2. M. Pader, Cosmetics & Toiletries, 98, 71 (1983)
  3. M. Pader, in Rheological Properties of Cosmetics and Toletries, Marcel Dekker, New Jersey, chap. 6 (1993)
  4. R. L. Davidson, ed., Handbook of Water-Soluble Gums and Resins, McGraw-Hill, New York, 1980
  5. Stabileze 06 Thickener/Stabilizer Method for Thickening and Gelling, ISP Technical Literature STAB06-2
  6. Magnabrite Magnesium Aluminium Silicate, American Colloid Company Technical Literature IC500
  7. D. B. Braun and M. R. Rosen, Rheology Modifiers Handbook: Practical Use and Application, William Andrew, New York, 2000
  8. S. H. Park, Design of Experiments, Minyungsa, Seoul, 1984
  9. J. S. Jang and S. W. Kim, Polymer(Korea), 18, 584 (1994)
  10. Madan Kumar Kharel and H. C. Lee, J. Ind. Eng. Chem., 8, 427 (2002) https://doi.org/10.1021/i500005a014
  11. H. Scheffe, J. Roy. Statist. Soc. B, 20, 344 (1958)
  12. H. Scheffe, J. Roy. Statist. Soc. B, 25, 235 (1963)
  13. N. R. Draper and W. E. Lawrence, J. Roy. Statist. Soc. B, 27, 450 (1965)
  14. R. A. McLean and V. L. Anderson, Technometrics, 8, 447 (1966) https://doi.org/10.2307/1266691
  15. J. S. Murty and M. N. Das, Ann. Math. Statist., 39, 1517 (1968) https://doi.org/10.1214/aoms/1177698134
  16. R. D. Snee and D. W. Marquardt, Technometrics, 16, 399 (1974) https://doi.org/10.2307/1267670
  17. R. D. Snee and D. W. Marquardt, Technometrics, 18, 19 (1976) https://doi.org/10.2307/1267912
  18. S. H. Park, Technometrics, 20, 273 (1978) https://doi.org/10.2307/1268136
  19. S. H. Park and N. K. Sunh, Journal of the Korean Statistical Society, 9, 145 (1980)
  20. Rheometer CR-X User's Manual, SUN Scientific Rheometer (1999)
  21. H. A. Barnes, J. F. Hutton, and K. Walets, An Introduction to Rheology, Elsevier Sience Publishers, B. V., 1989
  22. H. J. Choi, Rheological Properties of Chitosan-Buckwheat Gel Products, Inje University, Biohealth Products Research Center, 2005
  23. D. H. Lee, J. H. Lee, M. S. Cho, S. H. Choi, Y. K. Lee, and J. D. Nam, Polymer(Korea), 28, 201 (2004)