DOI QR코드

DOI QR Code

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method

다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계

  • Kang, Hyun Su (School of Mechanical Engineering, SungKyunKwan Univ.) ;
  • Lee, Jeong Min (School of Mechanical Engineering, SungKyunKwan Univ.) ;
  • Kim, Youn Jea (School of Mechanical Engineering, SungKyunKwan Univ.)
  • 강현수 (성균관대학교 기계공학부) ;
  • 이정민 (성균관대학교 기계공학부) ;
  • 김윤제 (성균관대학교 기계공학부)
  • Received : 2015.01.22
  • Accepted : 2015.02.28
  • Published : 2015.05.01

Abstract

In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

본 연구에서는 원심압축기 임펠러와 디퓨져 블레이드 형상을 반응표면법과 다목적 유전알고리즘 기법을 사용하여 최적설계 연구를 수행하였다. 임펠러와 디퓨져의 블레이드 선단과 후단의 각도와 두께를 3 구간으로 나누어 설계변수로 적용하였으며 수치해석은 상용코드인 ANSYS CFX 를 사용하였다. 실험계획법 중 많이 사용되는 중심합성계획을 이용하여 총 45 개의 설계점에 대한 값을 계산하였다. 계산된 결과를 바탕으로 반응표면을 생성하였으며 반응표면은 최적형상의 임펠러와 디퓨져를 선정하는데 이용하였다. 최적설계의 전 과정은 ANSYS DX 를 사용하였으며, 최적화의 결과로 원심압축기의 주요 성능변수인 등엔트로피 효율과 압력회복계수가 각각 0.3%, 5% 향상된 임펠러와 디퓨져 블레이드 형상을 제시하였다.

Keywords

References

  1. Kim, J. H., Choi, J. H., Husain and Kim, K. Y., 2010, "Multi-objective Optimization of a Centrifugal Compressor Impeller through Evolutionary Algorithms," J. Power and Energy, Vol. 224, pp. 711-721. https://doi.org/10.1243/09576509JPE884
  2. Kim, J. H., Choi, J. H. and Kim, K. Y., 2009, "Design Optimization of a Centrifugal Compressor Impeller using Radial Basis Neural Network Method," Proceeding of ASME Turbo Expo, Vol. 7, pp. 443-451.
  3. Kim, S., Choi, Y. S., Yoon, J. Y. and Kim, D. S., 2008, "Design Optimization of a Centrifugal Pump Impeller Using DOE," Journal of Fluid Machinery, Vol. 11, No.3, pp.36-42. https://doi.org/10.5293/KFMA.2008.11.3.036
  4. Kim, S. M., Park, J. Y., Ahn, K. Y. and Baek, J. H., 2009, "Numerical Investigation and Validation of the Optimization of a Centrifugal Compressor using a Response Surface Method," J. Power and Energy, Vol. 224, pp. 251-259.
  5. Benni, E. and Pediroda, V., 2001, "Aerodynamic Optimization of an Industrial Centrifugal Compressor Impeller using Genetic Algorithm," Proceedings of Eurogen, Athens, pp.467-472.
  6. Benni, E. and Tourlidakis, A., 2001, "Design Optimization of vaned Diffusers for Centrifugal Compressors using Genetic Algorithms," American Institute Aeronautics and Astronautics Paper, pp. 2001-2583.
  7. Wang, X. F., Xi, G. and Wang, Z. H., 2006, "Aerodynamic Optimization Design of Centrifugal Compressor's Impeller with Kriging Model," J. Power and Energy, Vol. 220, pp. 589-597. https://doi.org/10.1243/09576509JPE201
  8. Bardina, J. E., Huang, P. G. and Coakley, T., 1997, "Turbulence Modeling Validation," 28th AIAA Fluid Dynamics Conference, pp. 1997-2121.
  9. Moon, Y. L., Cho, T. M. and Kim, D. K., 2000, "Nonparametric Regression Estimation for Hydrologic Application," Proceeding of KSCE, Vol. 3, pp. 111-114.
  10. Ju, B. H., Cho, T. M., Jung, D. H. and Lee, B. C., 2006, "An Error Assessment of the Kriging based Approximation Model using a Mean Square Error," Trans. Korean Soc. Mech. Eng. A, Vol. 30, No. 8, pp. 923-930. https://doi.org/10.3795/KSME-A.2006.30.8.923

Cited by

  1. Basic Research on Structural Optimum Design of G/T 250ton Class Double-ended Car-Ferry Ship vol.21, pp.6, 2015, https://doi.org/10.7837/kosomes.2015.21.6.729
  2. Optimal design of impeller for centrifugal compressor under the influence of one-way fluid-structure interaction vol.30, pp.9, 2016, https://doi.org/10.1007/s12206-016-0807-0