• Title/Summary/Keyword: 반응도(R)

Search Result 3,004, Processing Time 0.111 seconds

A Study of Intercalations-complex of Montmorillonite as Model-system (III) (Model-system으로서의 몬트모릴로나이트의 층간화합물에 관한 연구 (III))

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.431-437
    • /
    • 2001
  • 본 연구에서는 양이온 교환반응에 의해 Na-Mont와 R$_{11}$SO$_4$로부터 R$_{11}$SO$_4$-Mont 층간화합물을 합성한 후, 이 R$_{11}$SO$_4$-Mont 층간화합물을 다시 제 4차 유기 양이온인 (Et)$_4$N$^{+}$ 이온 및 (Bu)$_4$N$^{+}$ 이온과 반응시켜 그 거동을 살펴보았다. R$_{11}$SO$_4$-Mont를 (Et)$_4$N$^{+}$이온과 반응시켰을 대보다 (Bu)$_4$N$^{+}$ 이온과 반응시킨 경우에 좀 더 큰 층간거리가 얻어졌다. R$_{11}$SO$_4$-Mont를 (Et)$_4$N$^{+}$이온 및 (Bu)$_4$N$^{+}$과 반응시켜 얻은 층간화합물을 다시 아세토니트릴, 에탄올 및 디옥산과 팽윤반응을 수행한 결과 층간거리가 확장되었으나, 이는 Na-Mont를 R$_{11}$SO$_4$와 48시간 교환 반응시킨 후에 교환용액 하에서 얻은 R$_{11}$SO$_4$-Mont의 층간거리에 불과했다. 원소분석결과, R$_{11}$SO$_4$-Mont와 (Bu)$_4$N$^{+}$를 반응시킬 경우 반응이 반응식 b에 의거 진행되고, (Bu)$_4$N-Mont를 R$_{11}$SO$_4$와 반응시킬 경우에는 반응식 c에 의거 진행됨을 예측할 수 있었다.의거 진행됨을 예측할 수 있었다.

  • PDF

Chemical Reactions in Surfactant Solution (I). Substituent Effects of 2-Alkylbenzimidazolide ions on Dephosphorylation in CTABr Solutions (계면활성제 용액속에서의 화학반응 (제1보). 미셀용액속에서의 탈인산화 반응에 미치는 2-알킬벤즈이미다졸음이온들의 치환기효과)

  • Young-Seuk Hong;Chan-Sik Park;Jung-Bae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.522-532
    • /
    • 1985
  • The reactions of p-nitrophenyldiphenylphosphate (p-NPDPP) with anions of benzimidazole (BI) and its 2-alkyl derivatives (R-BI) are strongly catalyzed by the micelles of cetyltrimethyl ammonium bromide (CTABr). On the other hand, the first order rate constants $(k'_{R-BI^-})$ and the second order rate constants $(k_{m(R-BI^-)})$ of the reactions mediated by R-$BI^-$in the micellar pseudophase are much smaller than those mediated by $BI^-$. In order to explain the slower rates of the micellar reactions mediated by R-$BI^-$, we compared the concentration-ratios ([R-$BI^-$]/[$BI^-$]) with the first order rate constant-ratios $(k'_{R-BI^-}/k'_{BI^-})$ and the second order constant-ratios $(k_{m(R-BI^-)}/k_{m(BI^-)})$ for the reactions taking place in the micellar pseudophase. The rate constant-ratios were much smaller than the concentration-ratios. For example in a 5 ${\times}10^{-4}$M butyl-BI solution, the two ratios were 0.089 and 0.430 (for the first order) respectively, and in a $10^{-4}$M butyl-BI solution the former was 0.100 (for the second order). This predicts that the reactivities of R-$BI^-$ in the micellar pseudophase are much smaller than that of $BI^-$. Based on the values of several kinetic parameters measured for dephosphorylation of p-NPDPP mediated by R-$BI^-$, a schemetic model is proposed. Due to the hydrophobicity and the steric effect of the alkyl substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long cetyl groups of CTABr. Consequently, the movements of R-$BI^-$ bound to the micelle should be restricted, leading to decreased collison frequencies between the nucleophiles and p-NPDPP. We refer this as an "anchor effect". This effect became more predominent when a larger alky group in R-BI was employed and when a greater concentration of R-BI was used.

  • PDF

Novel Cationic Group 4 Metal Alkyl Complexes for Olefin Polymerizations (올레핀중합용 첨단 양이온형 제4족 유기금속 착물)

  • Kim, Il
    • Polymer Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.236-253
    • /
    • 1994
  • 양이온형 $d^0\;Cp_2M(R)(L)^+$ 착물과 무염기 $Cp_2M(R)^+$ 착물은 $Cp_2M(R)_2$화합물로부터 쉽게 합성할 수 있다. 이들 친전자성 착물에서는 여러가지 리간드 교환반응, 삽입반응, ${\beta}$-H 제거반응 및 ${\sigma}$-결합 복분해반응이 일어날 수 있다. 일반적으로 $Cp2M(R)(L)^+$ 착물은 불포화도와 전하가 크기때문에 중성의 $Cp_2M(R)(X)$$Cp_2M(R)_2$보다 반응성이 크며 $d^0\;{Cp_2}^*M(R)^+$ (M=제 3족과 란탄계) 착물과 여러가지 반응에서 유사한 거동을 보인다. $Cp_2MX_2$를 기초로하여 합성된 Ziegler-Natta 촉매에 의한 올레핀 중합에서 활성점이 $Cp_2M(R)^+$ 양이온이라는 여러가지 직접적인 증거가 발표되었다. 분리가능한 $Cp_2M(R)(L)^+$ 착물은 올레핀중합에서 높은 활성을 보이며, 유기합성의 관점에서 흥미있는 C-C 재조합반응과 같은 다른 여러가지 반응이 일어날 수 있는 기회를 제공한다.

  • PDF

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

A Study of Homogeneous Reaction Section for Tri-reforming reaction (삼중개질반응의 균일반응계에 대한 연구)

  • Kim, Hyung-Gyu;Shin, Dong-Gun;Cho, Won-Jun
    • 한국가스학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.33-36
    • /
    • 2007
  • 합성가스는 C1화학을 시작하는 반응원료 물질로 최근 DME(dimethyl-ether), 메탄올, GTL(gas to liquid), CTL(coal to liquid), 암모니아 생성 공정 등 많은 화학공정에 사용되고 있다. 합성가스를 생산하는 방법은 천연가스 개질반응과 석탄의 가스화반응, 그리고 원유의 정제 등을 통해 얻을 수 있다. 삼중개질반응은 천연가스와 산소, 수증기, 이산화탄소를 원료로 $1000^{\circ}C$ 이상의 고온에서 반응시켜 합성가스를 생산하며, 균일반응계와 불균일반응계로 이루어져 있다. 균일반응계에서는 천연가스와 산소가 주로 반응하며, 원료로 투입된 대부분의 산소는 균일반응계에서 소모되어 일산화탄소와 이산화탄소를 생성한다. 삼중개질반응의 균일반응계에서는 산소와 천연가스와의 반응으로 많은 발열이 발생하여 전체 반응계의 온도를 유지할 수 있도록 해준다. 본 연구에서는 산소로 인한 삼중개질반응의 온도 조절과 균일반응계의 온도 분포를 위치에 따라 관찰해 보았으며, 실험과 모사를 통해 비교해 보았다.

  • PDF

Atmospheric chemistry and characteristics of HCHO, $CH_3CHO$ during intensive measurement for Development of Ozone Forecasting System for Seoul (서울시에 맞는 오존 예보 시스템 개발을 위한 집중 측정 시기의 알데하이드 화합물의 특성 및 대기화학)

  • 홍상범;정용국;이종민;이재훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.37-39
    • /
    • 2000
  • 오존에 대한 예보 모델을 연구하는 데는 오존의 생성과 소멸에 관한 광 화학 반응에 대한 이해가 중요한 데 대류권에서 일어나는 알짜 오존 생성(net ozone production)반응은 다음과 같다. (R1) $HO_2$.+NO$\longrightarrow$$NO_2$+OH. (R2) $RO_2$.+NO$\longrightarrow$$NO_2$+RO. (R3) $NO_2$+hu(424< nm) $\longrightarrow$NO+O($^{3}P$) (R4) O($^{3}P$)+$O_2$+M$\longrightarrow$$O_3$+M이때 (R1)과 (R2) 반응에 참여하는 $HO_2$.라디칼 / $RO_2$.라디칼은 주로 대기 중에 존재하는 탄화수소(RH)와 OH.의 반응에 의하여 직접 생성되기도 하고, 이때 생성된 알데하이드(RCHO) 화합물이 OH.과의 반응과 광분해 반응을 통해서 형성된다. 한편, 대도시 지역의 경우 자동차의 배기가스가 알데하이드 화합물의 주요 인위적인 배출원으로 알려져 있다(Viskari et al., 2000, Granby et al., 1997). (중략)

  • PDF

Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media (통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.116-124
    • /
    • 2022
  • In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.

Synthesis of Tetrafluoroethylene from the Pyrolysis of Chlorodifluoromethane in the Presence of Steam (과열 수증기를 이용한 클로로디플루오르메탄 열분해 반응에 의한 테트라플루오르에틸렌의 합성)

  • Han, Myungwan;Kim, Beom-Sik;Kim, Chul-Ung;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.190-195
    • /
    • 1999
  • The thermal pyrolysis of chlorodifluoromethane (R22) for producting tetrafluoroethylene (TFE) has been studied using the tubular reactor designed by the authors. The reaction temperature over $600{\sim}850^{\circ}C$, residence time over 0.005~0.6 sec, and steam/R22 ratio 3 to 30 were varied through experiments to analyze the effect of these variables on the conversion of R22 and selectivity for TFE. We have provided the guidelines for the optimal operation and design for the pyrolysis reactor. With increasing the dilution ratio, not only the conversion of R22 but also the selectivity for TFE increase. The optimum range of reaction temperature was $700{\sim}750^{\circ}C$ and the residence time 0.07~0.1 sec. In the kinetic study, first order rate equation was fitted well with the experimental data. This indicates that the main reaction step is a $CF_2$ generation from R22 pyrolysis. The range of activation energy for the rate constant was obtained 44.7~48 kcal/mol.

  • PDF

Monitoring of Dynamic Changes in Maillard Reaction Substrates by Response Surface Methodology (반응표면분석에 의한 Maillard 반응기질의 동적변화 모니터링)

  • Lee, Gee-Dong;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.212-219
    • /
    • 1996
  • Four-dimensional response surface methodology was used for monitoring dynamic changes in substrates during Maillard reaction. The coefficients of determination ($R^2$) of response surface regression equations for the changes in amino acids during Maillard reaction were 0.9478 for total amino acids and above 0.90 for each amino acid. $R^2$ of regression equations for the changes in sugars during Maillard reaction were 0.9250 for glucose and 0.6490 for fructose. The contents of total amino acids gradually decreased with increasing reaction temperature and pH of the solvent. Browning color intensity increased with rising reaction temperature, showing maximum color intensity at around $145^{\circ}C$. Each amino acid showed a decreasing tendency in its contents, which was similarly found in total amino acids. Four-dimensional response surface methodology indicated that the increased temperature during Maillard reaction was the most influential factor in decreasing substrates, such as aspartic acid, threonine and glucose. While the reaction time and pH of solvent little affected the changes in the above-mentioned substrates during Maillard reaction.

  • PDF

Study of reaction mechanism in pre-reforming for MCFC (MCFC의 예비 개질 반응 메커니즘 연구)

  • Lee, Woo-Hyung;Park, Yong-Ki
    • Industry Promotion Research
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, the reaction mechanism of ethane and the reaction rate equation suitable for hydrocarbon reforming were studied. Through the reaction mechanism analysis, it was confirmed that three reactions (CO2 + H2, C2H6 + H2, C2H6 + H2O) proceed during the reforming reaction of ethane, each reaction rate (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) was determined. It was confirmed that the C2H6 + H2O reaction was a rate determining step (RDS). And the reaction equation of this reaction can be expressed as r = kS * (KAKBPC2H6PH2O) / (1 + KAPC2H6 + KBPH2O) (KA = 2.052, KB = 6.384, $kS=0.189{\times}10-2$) through the Langmuir-Hinshelwood model. The obtained equation was compared with the derived power rate law without regard to the reaction mechanism and the power rate law was relatively similar fitting in the narrow concentration change region (about 2.5-4% of ethane, about 60-75% of water) It was confirmed that the LH model reaction equation based on the reaction mechanism shows a similar value to the experimental value in the wide concentration change region.