DOI QR코드

DOI QR Code

Study of reaction mechanism in pre-reforming for MCFC

MCFC의 예비 개질 반응 메커니즘 연구

  • Received : 2018.07.09
  • Accepted : 2018.07.27
  • Published : 2018.07.31

Abstract

In this study, the reaction mechanism of ethane and the reaction rate equation suitable for hydrocarbon reforming were studied. Through the reaction mechanism analysis, it was confirmed that three reactions (CO2 + H2, C2H6 + H2, C2H6 + H2O) proceed during the reforming reaction of ethane, each reaction rate (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) was determined. It was confirmed that the C2H6 + H2O reaction was a rate determining step (RDS). And the reaction equation of this reaction can be expressed as r = kS * (KAKBPC2H6PH2O) / (1 + KAPC2H6 + KBPH2O) (KA = 2.052, KB = 6.384, $kS=0.189{\times}10-2$) through the Langmuir-Hinshelwood model. The obtained equation was compared with the derived power rate law without regard to the reaction mechanism and the power rate law was relatively similar fitting in the narrow concentration change region (about 2.5-4% of ethane, about 60-75% of water) It was confirmed that the LH model reaction equation based on the reaction mechanism shows a similar value to the experimental value in the wide concentration change region.

본 연구에서는 탄화수소 개질을 위한 예비 개질기에서 에탄의 반응 메커니즘과 이에 적합한 반응속도식에 대한 연구를 수행하였다. 반응 mechanism 분석을 통해 ethane의 개질 반응 중 (CO2+H2,C2H6+H2,C2H6+H2O)3개의 반응이 진행되는 것을 확인할 수 있었으며, 각각의 반응 속도 (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) 를 구하였다. 이를 통해 C2H6+H2O반응이 rate determining step (RDS)임을 확인하고, Langmuir-Hinshelwood model (L-H model)을 통해 이 반응의 반응식을 r=kS*(KAKBPC2H6PH2O)/(1+KAPC2H6+KBPH2O)2 (KA=2.052,KB=6.384,$kS=0.189{\times}10-2$)로 나타낼 수 있었다. 이렇게 얻어진 반응식은 반응 메커니즘을 고려하지 않고 유도된 power rate law와 비교하였으며, power rate law는 좁은 농도 변화 영역 (ethane 약 2.5-4%, water 약 60-75%)에서는 비교적 유사한 fitting이 이루어졌지만, 넓은 농도 변화영역에서는 반응 mechanism을 토대로 얻은 L-H model 반응식이 실험값과 더 유사한 값을 보이는 것을 확인하였다.

Keywords

References

  1. L. Carrett, K. A. Friedrich and U. Stimming, Fuel Cells, 1 (2001) 5-39. https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  2. Fuel Cell Handbook(7thedition).
  3. Fuel Processing Technology, 42 (1995) 85-107. https://doi.org/10.1016/0378-3820(94)00099-F
  4. T.S. Christensen /Applied Catalysis A: General 138 (1996) 285-309. https://doi.org/10.1016/0926-860X(95)00302-9
  5. P.B. Tettrup, Appl. Catal., 4 (1982) 377. https://doi.org/10.1016/0166-9834(82)80135-8
  6. Fuel Processing Technology, 83 (2003) 253-261 https://doi.org/10.1016/S0378-3820(03)00073-0
  7. lap fit site
  8. Appl. Catal. A: General, 138 (1996) 285-309. https://doi.org/10.1016/0926-860X(95)00302-9
  9. Applied Catalysis A:General 332(2007) 310-317. https://doi.org/10.1016/j.apcata.2007.08.032
  10. G. Kolb, R. Zapf, V. Hessel, H. Lowe, Appl. Catal. A Gwn. 277(2004) 155. https://doi.org/10.1016/j.apcata.2004.09.007
  11. C. Resini, M.C.H. Delgado, L. Arrighi, L.J. Alemany, R. Marazza, G. Busca, Catal. Commun. 6 (2005) 441. https://doi.org/10.1016/j.catcom.2005.03.009
  12. T. Sperle et al./ Applied Catalysis A:General 282(2005) 195-204 https://doi.org/10.1016/j.apcata.2004.12.011