DOI QR코드

DOI QR Code

통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포

Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media

  • 이은주 (대구대학교 화학공학과) ;
  • 임광희 (대구대학교 화학공학과)
  • Lee, Eun Ju (Department of Chemical Engineering, Daegu University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • 투고 : 2021.11.17
  • 심사 : 2021.12.14
  • 발행 : 2022.02.01

초록

교대로 운전되는 광촉매반응기 공정, 및 바이오필터 공정(전통적 바이오필터(L 반응기)와 두 개의 유닛(unit)을 가지는 개선된 바이오필터시스템(R 반응기))로 구성된 통합처리시스템에서, 에탄올과 황화수소를 동시 함유한 폐가스 처리를 수행하는데 발생하는 공정 당 압력강하(△p)와 바이오필터 공정의 미생물 population 분포를 관찰하였다. 교대로 운전되는 광촉매 반응기의 △p는, 바이오필터의 △p와 비교할 때에 무시할 정도로 작게 관찰되었다. L 반응기의 △p는, 통합처리시스템의 운전 중에 계속 증가하여 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m)로 증가하였다. 한편 R 반응기의 경우에서는 L 반응기의 △p의 약 16~20% 이하인 작은 △p를 나타내었다. 본 연구에서 적용한 공극율이 큰 폐타이어 담체 등의 바이오필터 담체 및 R 반응기 설계의 적용이, 목재 칩(wood chip)과 목재 바크(wood bark)의 50 대 50인 혼합물을 바이오필터 담체로 사용한 전통적 바이오필터의 보고된 압력강하 값의 각각 37~50%와 40~53% 만큼 압력강하 저감에 공헌하였다고 분석되었다. 또한 본 연구의 R 반응기 운전에서 압력강하 값이, 공극율이 큰 화산석(scoria)과 compost를 75 대 25로 혼합한 복합 담체를 충전한 전통적 바이오필터의 보고된 압력강하 값보다 약 80%만큼 저감된 결과는 주로 R 반응기 설계의 적용에 기인하였다고 해석되었다. 한편, 통합처리시스템에서 바이오필터 담체의 microbial population 분포로서 L 반응기 및 R 반응기의 담체 내 미생물 콜로니 수 비교에서는 L 반응기가 제일 밑단에서 다른 윗 단의 콜로니 수보다 거의 두 배로 증가하였으나; R 반응기의 경우는 Rdn 반응기와 Rup 반응기 각각의 상단과 하단에서 고르게 분포하였고 L 반응기보다 콜로니 수가 평균적으로 약 50% 정도 더 컸다. 이러한 현상은 R 반응기의 상단과 하단의 함수율이 50-55%의 고른 분포를 보인 것에 기인하였다. 따라서 개선된 바이오필터시스템이 전통적 바이오필터보다 △p와 미생물 population 분포에서 더욱 우수한 특성을 보였다.

In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.

키워드

참고문헌

  1. Ndegwa, P. M., Hristov, A. N., Arogo, J. and Sheffield, R. E., "A Review of Ammonia Emission Mitigation Techniques for Concentrated Animal Feeding Operations," Biosystems Engineering, 100(4), 453-469(2008). https://doi.org/10.1016/j.biosystemseng.2008.05.010
  2. Sun, Y., Quan, X., Chen, J., Yang, F., Xue, D., Liu, Y. and Yang, Z., "Toluene Vapour Degradation and Microbial Community in Biofilter at Various Moisture Content," Process Biochemistry, 38(1), 109-113(2002). https://doi.org/10.1016/S0032-9592(02)00056-0
  3. Baltrenas, P., Janusevicius, T. and Kleiza, J., "Effect of Packing Material Composition on the Aerodynamic Processes in a Wavy Lamellar Plate-Type Biofilter," Processes, 9(4), 625(2021). https://doi.org/10.3390/pr9040625
  4. Yang, C. P., Suidan, M. T., Zu, X. Q. and Kim, B. J., "BiomassAccumulation Patterns for Removing Volatile Organic Compounds in Rotating Drum Biofilters," Water Sci. Tech., 48, 89-96 (2003).
  5. Alonso, C., Suidan, M. T., Kim, B. R. and Kim, B. J., "DynamicMathematical Model for the Biodegradation of VOCs in a Biofilter: Biomass Accumulation Study," Environ. Sci. Technol., 2, 3118-3123(1998).
  6. Okkerse, W. J. H., Ottengraf, S. P. P., Osinga-Kuipers, B. and Okkerse, M., "Biomass Accumulation and Cogging in Biotrickling Filters for Waste Gas Treatment," Biotechnol. Bioeng., 63, 418-430(1999). https://doi.org/10.1002/(SICI)1097-0290(19990520)63:4<418::AID-BIT5>3.0.CO;2-0
  7. Smith, F. L., Sorial, G. A. Suidan, M. T., Breen, A. W. and Bismas, P., "Development of Two Biomass Control Strategies for Extended, Stable Operation of Highly Efficient Biofilters withHigh Toluene Loadings," Environ. Sci. Technol., 30, 1744-1751(1996). https://doi.org/10.1021/es950743y
  8. Cox, H. H. J. and Deshusses, M. A., "Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation," J. Eng. Appl. Sci., 62, 216-224(1999).
  9. Cox, H. H. J. and Deshusses, M. A., "Chemical Removal pf Biomass from Waste Air Biotrickling Filters: Screening Chemicals of Potential Interest," Water Res., 33, 2383-2391(1999). https://doi.org/10.1016/S0043-1354(98)00452-7
  10. Moe, W. M. and Irvine, R. L., "Polyurethane Sponge Medium for Biofiltration, II: Operation and Performance," J. Environ. Eng., 126, 826-832(2000). https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(826)
  11. Kenes, C. and Veiga, M. C., "Inert Filter Media for the Biofiltration of Waste Gas-characteristics and Biomass Control," Rev. Environ. Sci. Biotechnol., 1, 201-214(2002). https://doi.org/10.1023/a:1021240500817
  12. Yang, C. P., Suidan, M. T., Zu, X. Q. and Kim, B. J., "Comparison of Single-layer and Multi-layer Rotating Drum Biofiltersfor VOC Removal," Environ. Prog., 22, 87-94(2003). https://doi.org/10.1002/ep.670220210
  13. Dorado, A. D., Baeza, J. A., Lafuente, J., Gabriel, D. and Gamisans, X., "Biomass Accumulation in Biofilter Treating Toluene atHigh Loads-Part 1: Experimental Performance from Inoculationto Clogging," Chem. Eng. J., 209, 661-669 (2012). https://doi.org/10.1016/j.cej.2012.08.018
  14. Chen, L. and Hoff, S. J., "A Two-stage Wood Chip-based Biofilter System to Mitigate Odors from a Deep-pit Swine Building," Applied Engineering in Agriculture, 28(6), 893-901(2012). https://doi.org/10.13031/2013.42476
  15. Kristensen, E. F., Kofman, P. D. and Jensen, P. D., "Counter Pressure on Ventilation of Different Types of Wood Chip and Chunkwood," Biomass and Bioenergy, 25(4), 399-408(2003). https://doi.org/10.1016/S0961-9534(03)00031-X
  16. Shareefdeen, Z., "Hydrogen Sulfide (H2S) Removal Using Schist Packings in Industrial Biofilter Applications," Korean Journal of Chemical Engineering, 32(1), 15-19(2015). https://doi.org/10.1007/s11814-014-0349-z
  17. Lee E. J. and Lim, K.-H., "A Dynamic Adsorption Model for the Gas-phase Biofilters Treating Ethanol: Prediction and Validation," Korean Journal of Chemical Engineering, 29(10), 1373-1381(2012). https://doi.org/10.1007/s11814-012-0063-7
  18. Swanson, W. J. and Loehr, R. C., "Biofiltration: Fundamentals, Design and Operations Principles, and Applications," Journal of Environmental Engineering, 123(6), 538-546(1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(538)
  19. Williams, T. O. and Miller, F. C., "Odor Control Using Biofilters: Part 1. This Overview of Basic Design and Operating Criteria Explains How Biofilters Can be Used More Efficiently to Control Odors Emanating from Composting Facilities," BioCycle, 33, 72-77(1992).
  20. Baquerizo, G., Maestre, J. P., Sakuma, T., Deshusses, M. A., Gamisans, X., Gabriel, D. and Lafuente, J., "A Detailed Model of a Biofilter for Ammonia Removal: Model Parameters Analysis and Model Validation," Chemical Engineering Journal, 113(2-3), 205-214(2005). https://doi.org/10.1016/j.cej.2005.03.003
  21. Chen, Y.-X., Yin, J. and Wang, K.-X., "Long-term Operation of Biofilters for Biological Removal of Ammonia. Chemosphere," 58(8), 1023-1030(2005). https://doi.org/10.1016/j.chemosphere.2004.09.052
  22. Chen, L. and Hoff, S. J., "Mitigating Odors from Agricultural Facilities: a Review of Literature Concerning Biofilters," Applied Engineering in Agriculture, 25(5), 751-766(2009). https://doi.org/10.13031/2013.28854
  23. Grubecki, I., "Airflow Versus Pressure Drop for a Mixture of Bulk Wood Chips and Bark at Different Moisture Contents," Biosystems Engineering, 139, 100-110(2015). https://doi.org/10.1016/j.biosystemseng.2015.08.008
  24. Amin, M. M., Rahimi, A., Bina, B., Heidari, M. and Moghadam, "Performance Evaluation of a Scoria-compost Biofilter Treating Xylene Vapors," Journal of Environmental Health Science & Engineering, 12(1), 140(2014). https://doi.org/10.1186/s40201-014-0140-4
  25. Lee, E. J. and Lim, K.-H., "Biofilter Treatment of Waste Air Containing Malodor and VOC: 1. Pressure Drop and Microbepopulation Distribution of Biofilter with Improved Design," Korean Chem. Eng. Res., 51(1), 127-135(2013). https://doi.org/10.9713/kcer.2013.51.1.127
  26. Lim, K.-H. and Lee, E. J., "Novel Process System Composed of UV(or VIS-)/photo-catalytic Reactor Washable During its Operation and Robust Biofilter System to Treat Waste Air Containing Malodorous and Volatile Organic Compounds," Korean Patent No. 10-0942147(2010).
  27. Lee, E. J. and Lim, K.-H., "Time-dependent Behavior of Waste-air Treatment Using Integrated Hybrid System," Korean Chem. Eng. Res., 60(1), 100-115(2022).
  28. Lee, E. J. and Lim, K.-H., "Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photo-catalytic Reactors and Evaluation of Its Characteristics," Korean Chem. Eng. Research, 59(4), 574-583(2021). https://doi.org/10.9713/KCER.2021.59.4.574
  29. Lee, E. J., Jung, C. H. and Lim, K.-H., "Characterization of Repeated Deactivation and Subsequent Re-activation of Photo-catalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System," Korean Chem. Eng. Research, 59(4), 584-595(2021). https://doi.org/10.9713/KCER.2021.59.4.584