• Title/Summary/Keyword: 반수석고

Search Result 38, Processing Time 0.028 seconds

Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum (알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성)

  • Hong-Seop Kim;Kyoung-Su Shin;Do-Gyeum Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • In this study, the mechanical properties of PHC pile concrete using alpha-type hemihydrate gypsum were evaluated. As the replacement ratio of alpha-type hemihydrate gypsum increased, the setting time rapidly accelerated. In particular, when replacement ratio exceeded 20 %, the setting time was shortened due to rapid hydration reaction, making it impossible to secure working time. As the replacement ratio of alpha-type hemihydrate gypsum increased, the ettringite and gypsum peaks tended to increase, and it is believed that the shrinkage of concrete decreased due to the increase in the ettringite peak. At a As the replacement ratio of 5 to 15 % for alpha-type hemihydrate gypsum, the compressive strength increased or was found to be equivalent to that of OPC. But at 20 % substitution, workability deteriorated due to rapid setting, so use of the 5 to 15 % range is considered appropriate.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

Compressive Strength Characteristics of PHC Pile Substituted with α-Calcium Sulfate Hemihydrat (알파형 반수석고를 치환한 PHC파일의 압축강도 특성)

  • Shin, Kyoung-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.152-153
    • /
    • 2022
  • In this study, the mechanical properties of PHC Pile were investigated using α-calcium sulfate hemihydrate, an industrial by-product with excellent expansion performance. As a result, the compressive strength of PHC pile showed a tendency to be higher than that of general Portland cement (OPC).

  • PDF

Synthesis of Crystalline Calcium Sulfate Dihydrate from Phosphogypsum (인산부생석고(燐酸副生石膏)로부터 결정질(結晶質) 이수석고(二水石膏)의 제조(製造))

  • Park, Woon-Kyoung;Song, Young-Jun;Lee, Jung-Mi;Lee, Gye-Seung;Kim, Youn-Che;Shin, Kang-Ho;Yoon Si-Nae;Park, Charn-Hoon
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.20-29
    • /
    • 2006
  • This study was carried out for to recover the purified crystalline gypsum from phosphogypsum by means of using it's crystallographical Properties. The dehydration of hydrated phosphogypsum to $\alpha$-hemihydrate is completed with the 2 hours treatment of it in $99^{\circ}C$ waterrs. The purified crystalline gypsum having the maximum size of $200{\mu}m$ was obtained by 325# wet screening after recrystallization of the $\alpha$-hemihydrate gypsum at the condition of $Na_2SO_4$ 10 wt%, slurry density 20%, $pH\;5{\sim}6,\;65^{\circ}C$ and 4hr. In this process, the yield of gypsum was 93.9% and its grade was 99%.

A Fundamental Study on the Material Characteristic of Micro-Admixture for Cement using Phosphogypsum and Kaolin (인산부산석고와 카올린을 활용한 시멘트용 마이크로 결합재의 재료 특성에 관한 기초적 연구)

  • Oh, Hong-Seob;Park, Jong-Tak;Lee, Won-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.144-151
    • /
    • 2010
  • In this study, it is investigated the mechanical chemical properties of cement matrix using phosphogypsum and kaolin as a admixture for the substitutive materials to silica fume which is so expensive. For the test, phosphogypsum is modified as dihydrate, hemihydrate, type III anhydrite, and type II anhydrite, respectively and furnaced kaolin at $900^{\circ}C$ was also manufactured into meta kaolin by air cooling and water cooling method. The chemical characteristic and mechanical properties of various type of blended cements contained above mentioned gypsum and meta kaolin materials analyzed and compared with those characteristics of cement matrix with silica fume. From the test, the cement mixed meta kaolin made in water cooling has more excellent quality than other material.

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

Density and Strength Properties of according to the Gypsum replacement of Lightweight Matrix based on Blast Furnace Slag (고로슬래그 기반 석고를 사용한 경량 경화체의 밀도 및 강도 특성)

  • Kim, Weon-Jeong;Lee, Seung-Ho;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.169-170
    • /
    • 2015
  • This study is the experiment for manufacturing the Lightweight non-cement matrix based on the blast furnace slag, paper ash. Materials like cement and blowing agent in foamed concrete is replaced by by-products fro blast furnace slag and paper ash. Further, the experiment was performed by replacing alkali with nature gypsum and α type gypsum by (0, 5, 10, 15, 20) of weight of alkali (wt.%) in order to reduce the amount of expensive alkali-activator. Consequently, in the case of the density, plain showed the lowest density and it seems that specimen adding nature gypsum 5% has the best compressive strength and flexural strength. It is detemined that the strength is lowered in accordance with the α type gypsum replacement ratio is higher. The research that it can supplement the further intensity seems to be needed.

  • PDF

Dehydration Reaction of Phosphogypsum in a Fluidized Bed Reactor (유동화 반응조에서의 인산석고의 탈수반응에 관한 연구)

  • Il Hyun Park;Shin Hwan Ihn;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.329-336
    • /
    • 1980
  • A domestic phosphogypsum was calcined in a batch type fluidized bed reactor at various reaction temperatures ranging 90∼180$^{\circ}$ without and with an alkaline additive amounting up to 5% of gypsum, and physical properties of the resultant products were compared following their characterization by X-ray diffraction pattern and DTA. It has been found that dehydration reactions were uniformly carried out in the fluidized bed reactor and only hemihydrate was obtained at 90$^{\circ}$ whereas at higher temperatures dehydration reaction progressed further. When gypsum was charged to the reactor preheated at over 140$^{\circ}$, a considerable degree of dehydration occurred before the reactant reached the initially set reactor temperature and in particular, at over 160$^{\circ}$ most of dehydration reaction was performed prior to the present reactor temperature. However, it has been found that gypsum mostly transforms into hemihydrate around the reactant temperature of 140$^{\circ}$ while transformation into anhydrite mostly occurs around $160^{\circ}C.$ When calcium hydroxide was added to gypsum in the reactor, the optimum physical properties of the calcined product were obtained at the weight ratio of $Ca(OH_2)/P_2O_5$ = 3.2.

  • PDF

Fire-Resistance Property of Cement Extruding Panel Mixed with Alpha-Hemihydrate Gypsum (알파형 반수석고를 혼입한 시멘트 압출 패널의 내화특성)

  • Choi, Duck-Jin;Lee, Min-Jae;Shin, Sang-choul;Kim, Ki-Suk;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.109-110
    • /
    • 2011
  • Gypsum is an important building material used to provide fire resistance to constructions by reducing their temperature rises. As the hardened gypsum is exposed to fire, evaporation of both the free water and the chemical bond water is easier than that in the cement extruding panel. The purpose of this study is to investigate the utilizability of alpha-hemihydrate gypsum to prevent spalling failure of cement extruding panel exposed to fire. This paper reports the fire-resistance property of a controled general cement extruding panel(C100), and gypsum-cement extruding panels(C50A50, A100) according to replacement ratio of alpha-hemihydrate gypsum. As a results, it is found that A100 and C50A50 are more effective to prevent the explosive spalling failure under standard fire condition than C100.

  • PDF