• Title/Summary/Keyword: 반경류 터빈

Search Result 10, Processing Time 0.022 seconds

The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC (ORC 반경류터빈의 예비설계프로그램 개발 및 OTEC용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.276-284
    • /
    • 2014
  • The purpose of this study is to establish the designing method of ORC(Organic Rankine Cycle) radial inflow turbines. RTDM(Radial Turbine Design Modeler) Ver.2.1 which is a preliminary design program of radial inflow turbines was developed to achieve this purpose. The 200kW-class radial inflow turbine for OTEC(Ocean Thermal Energy Conversion) was designed by using the RTDM Ver.2.1 and CFD(Computational Fluid Dynamics) simulation was performed to verify the accuracy of RTDM Ver.2.1. With the result of simulation, the accuracy of RTDM Ver.2.1 was almost 94.6% based on the designed total enthalpy drop of the radial inflow turbine. Strategy of adjusting the mass flow rate was adopted on this study to satisfy the requirements of its power and rotor outlet's conditions for the designed radial inflow turbine. The mass flow rate was consequently increased to 21.2 kg/s for the designed 200kW-class radial inflow turbine for OTEC, and then Total to total and Total to static efficiency are 89.8% and 85.36% respectively.

Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32 (R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kim, You Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1101-1105
    • /
    • 2014
  • Ocean Thermal Energy Conversion(OTEC) which uses the temperature difference between warm surface sea-water and cold deep sea-water to produce electric power is the promising technology. OTEC is able to be utilized as the $CO_2$ reducing technology by using the consistent temperature differential, while the system efficiency is very low. Thus, the design and development of a efficient turbine is essential to improve the system efficiency for OTEC. In this study, a 100kW-class radial inflow turbine using R32 was designed for OTEC and this turbine's performance was estimated by analysis of CFD. According as the simulation results, turbine's geometry was corrected. The radial inflow turbine satisfying the requirements is designed by the repeated attempts.

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.

Design and Analysis of a Radial Turbine for Ocean Thermal Energy Conversion (해양온도차발전용 반경류 터빈의 설계 및 해석)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • The preliminary design of a radial inflow turbine using R134a as the working fluid at 5 kW of power for application to ocean thermal energy conversion (OTEC) is performed to obtain the trends for the efficiency and geometrical dimensions of the turbine. Using input conditions that included a turbine inlet temperature of $25^{\circ}C$, an outlet static pressure of 4.9 bar, and a mass flow rate of 1.16 kg/s, the results of a mean flow analysis show the major dimensions of the turbine, along with an angular velocity of 12,820 rpm. Based on these results, a three-dimensional turbine model is constructed for a computational fluid dynamics (CFD) analysis. The flow characteristics inside the turbine, including the volute and nozzle, are investigated using the CFD software ANSYS CFX. For a pertinent number of nozzle guide vanes, ranging from 10 to 15, the turbine efficiency was higher than 80%, with the highest efficiency shown by a nozzle with 15 guide vanes.

Influence of Performance and Internal Flow of a Radial Inflow Turbine with Variation of Vane Nozzle Exit Angles (베인노즐 출구각도에 따른 100kW급 구심터빈의 성능 및 내부유동의 영향)

  • Mo, Jang-Oh;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.757-764
    • /
    • 2011
  • In this study, we analysed the influence of the performance and inflow flow of a radial inflow turbine with the variation of vane nozzle exit angles for a 100kW class turbine applicable in the waste heat recovery system. For this, three-dimensional CFD analysis was performed using commercial code called ANSYS Fluent 12.1. As the vane nozzle exit angle was more increased the reattachment region near blades of the vane nozzle got smaller, and also the Mach number at vane nozzle exit was observed to be 1 due to the effect of the cross section reduction. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power.

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.

A Study on the Prediction of Performance and Simulation in a Radial inflow-Turbine for Exhaust Gas Turbochargers (과급기 구동용 반경류 배기터빈의 수치해석과 성능예측)

  • Jeong, Hyo-Min;Koh, Dae-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.220-228
    • /
    • 1993
  • This paper presents a description and evaluation of a detailed mathematical simulation for the steady and unsteady flow in a radial inflow-turbine which is most frequently used, at present, for exhaust gas turbochargers of internal combustion engines. As a method of computation, the two-step differential Lax-Wendroff method and the characteristic method were used. The turbine characteristics, the mass flow rate, the power output and fluid movements at the turbine scroll inlet were compared with the experiment data. The results of the simulation were in good agreement with experimental values under both steady and unsteady flow conditions.

  • PDF

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.

항공기용 ACM(Air Cycle Machine) 설계 및 공력성능시험

  • 현용익;김진한;김춘택;차봉준;이대성;김승우;천익정
    • 유체기계공업학회:학술대회논문집
    • /
    • 1997.02a
    • /
    • pp.58-73
    • /
    • 1997
  • 본 연구는 항공기용 환경제어계통의 시스템관련 제반 기술 및 그 핵심요소인 ACM(Air Cycle Machine)시제기의 개발을 통하여 국내의 여런 항공기개발 사업과 관련하여 급속히 요구되고 있는 항공기의 sub-system을 국산화할 수 있는 기술축적을 목적으로 수행되었다. 본 연구에서는 항공기용 환경제어장치(Environmental Control System : ECS)를 개발대상으로 하여 그 핵심부품인 Air Cycle Machine의 시제품을 순수 국내 기술로 설계/제작하였고, 자체 개발한 성능시험기를 이용하여 성능시험을 수행하였으며 또한 ACM 성능을 검증하기 위하여 기존제품의 자료와 비교하였다. 향후 이 시스템의 상품화를 위해서는 구동축의 무윤활 베어링에 대한 연구가 병행되어 주유동의 오일오염을 국소화시키는 시스템보완이 요구된다. 항공기용 환경제어장치(ECS)의 시스템해석부터 ACM의 공력/구조설계, 제작, 시험등 일련의 개발과정을 통하여 시스템에 대한 해석능력이 향상되었고, 그 핵심요소인 ACM의 순수 국산화개발이 가능하다는 판단을 내릴 수 있었다. 또한, ACM을 구성하고 있는 원심압축기와 반경류형 터빈의 제작 및 시험법은 유사 시스템 및 일반 터보기계류의 국산화개발에 유용하게 이용될 것으로 기대된다.

  • PDF