DOI QR코드

DOI QR Code

Design and Analysis of a Radial Turbine for Ocean Thermal Energy Conversion

해양온도차발전용 반경류 터빈의 설계 및 해석

  • Received : 2014.05.22
  • Accepted : 2015.01.03
  • Published : 2015.03.01

Abstract

The preliminary design of a radial inflow turbine using R134a as the working fluid at 5 kW of power for application to ocean thermal energy conversion (OTEC) is performed to obtain the trends for the efficiency and geometrical dimensions of the turbine. Using input conditions that included a turbine inlet temperature of $25^{\circ}C$, an outlet static pressure of 4.9 bar, and a mass flow rate of 1.16 kg/s, the results of a mean flow analysis show the major dimensions of the turbine, along with an angular velocity of 12,820 rpm. Based on these results, a three-dimensional turbine model is constructed for a computational fluid dynamics (CFD) analysis. The flow characteristics inside the turbine, including the volute and nozzle, are investigated using the CFD software ANSYS CFX. For a pertinent number of nozzle guide vanes, ranging from 10 to 15, the turbine efficiency was higher than 80%, with the highest efficiency shown by a nozzle with 15 guide vanes.

해양온도차발전용 터빈의 효율과 크기를 파악하기 위해 R134a를 작동유체로 하고 출력 5 kW인 반경류형 터빈의 설계가 수행되었다. 터빈입구온도 $25^{\circ}C$, 출구 정압 4.9 bar, 질량유량 1.16 kg/s 로 설정하고 평균유동해석을 수행하여 터빈의 회전수와 주요 치수를 결정하였다. 이들을 바탕으로, 3 차원 터빈 모델을 구축하였으며, 도출된 터빈회전수 12,820 rpm에 대하여 전산유체역학(CFD) 소프트웨어 ANSYS CFX를 이용하여 볼류트와 노즐을 포함하는 터빈 내부 유동장 특성과 효율이 조사되었다. 80%이상의 터빈 효율이 적정 범위 내의 노즐 안내깃 수(10-15 개)에서 제시되었으며, 가장 높은 터빈 효율은 15 개의 안내 깃에서 나타났다.

Keywords

References

  1. Quoilin, S., Broek, M. V. D., Declaye, S., Dewallef, P. and Lemort, V., 2013, "Techno-economic Survey of Organic Rankine Cycle (ORC) System," Renewable and Sustainable Energy Reviews, Vol. 22, pp. 168-186. https://doi.org/10.1016/j.rser.2013.01.028
  2. Fiaschi, D., Manfrida, G. and Maraschiello, F., 2012, "Thermo-fluid Dynamics Preliminary Design of Turbo-expanders for ORC Cycles," Applied Energy, Vol. 97, pp. 601-608. https://doi.org/10.1016/j.apenergy.2012.02.033
  3. Kang, S. H., 2012, "Design and Experimental Study of ORC (Organic Rankine Cycle) and Radial Turbine Using R245fa Working Fluid," Energy, Vol. 41, pp. 514-524. https://doi.org/10.1016/j.energy.2012.02.035
  4. Sauret, E. and Rowlands, A. S., 2011, "Candidate Radialinflow Turbines and High-density Working Fluids for Geothermal Power Systems," Energy, Vol. 36, pp. 4460-4467. https://doi.org/10.1016/j.energy.2011.03.076
  5. Ventura, C. A. M., Jacobs, P. A., Rowlands, A. S., Petrie-Repar, P. and Sauret, E., 2012, "Preliminary Design and Performance Estimation of Radial Turbines: an Automated Approach," Journal of Fluids Engineering, Vol. 134, pp. 031102-1-13. https://doi.org/10.1115/1.4006174
  6. Pini, M., Persico, G., Casati, E. and Dossena, V., 2013, "Preliminary Design of a Cntrifugal Trbine for Oganic Rankine Cycle Applications," Journal of Engineering for Gas turbines and power, Vol. 132, pp. 041312-1-9.
  7. Simpson, A. T., Spence, S. W. T. and Watterson, J. K., 2013, "Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space and Vane Solidity in Radial Turbine Stators," Transaction of the ASME, Vol. 135, pp. 031001-1-12. https://doi.org/10.1115/1.4023322
  8. Hideaki, T., Masaru, U., Akira, I. and Shinnosuke, I., 2007, "Study on Flow Fields in Variable Area Nozzles for Radial Turbines," IHI Engineering review, Vol. 40, No. 2, pp. 89-97.
  9. Putra, M. A. and Joos, F., 2013, "Investigation of Secondary Flow Behavior in a Radial Turbine Nozzle," Journal of Turbomachinery, Vol. 135, pp. 061003-1-11. https://doi.org/10.1115/1.4024627
  10. Dixson, S. L. and Hall, C., Fluid Mechanics and Tuermodynamics of Trbomachinery, 6th ed. Butterworth-Heinemann, Elsevier Science, Boston, USA, 2010.
  11. ANSYS CFX 14.5 theory guide
  12. Whitfield, A., 1990, "The Preliminary Design of Radial Inflow Turbines," Transactions of the ASME, Vol. 112, pp. 50-57. https://doi.org/10.1115/1.2912578
  13. Whitfield, A. and Baines, N. C., Design of radial turbomachines, John Wiley & Sons, Inc., New York, USA, 1990.
  14. Shin, J. H. and Lee, G. S., 2011, "Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 12, pp. 1391-1398. https://doi.org/10.3795/KSME-B.2011.35.12.1391
  15. Lee, J. S., Shinpyun Turbomachinery, Dongmyungsa, 1980.
  16. Glassman, A. J., Computer program for design and analysis inflow turbines, NASA TN 8164, 1976.
  17. Koutsourakis, N., Bartzis, J. G. and Markatos, N. C., 2012, "Evaluation of Reynolds Sress, k-${\varepsilon}$ and RNG k-${\varepsilon}$ Trbulence Models in Street Canyon Flows Using Various Experiment Datasets," Environmental Fluid Mechanics, Vol. 12, pp. 379-403. https://doi.org/10.1007/s10652-012-9240-9
  18. Shih, T.-H., Liou, W. W., Shabbir, A. and Zhou, A., 1995, "A New k-${\varepsilon}$ Eddy-viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation," Computers Fluids, Vol. 24, No. 3, pp. 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  19. Lee, G. S., Son, C. H. and Kim, T. M., 2005, "2-Dimensional Film Cooling Characteristics with the Height Variation of Stepped Slot Exit," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 1, pp. 46-54. https://doi.org/10.3795/KSME-B.2005.29.1.046
  20. Yang, H.-C., Ryou, H.-S. and Lim, J.-H., 1997, "A Study of Applicability of a RNG k-${\varepsilon}$ Model," Trans. Korean Soc. Mech. Eng. B, Vol. 21, No. 9, pp. 1149-1164. https://doi.org/10.22634/KSME-B.1997.21.9.1149
  21. Nguyen, V. H. and Lee, G. S., 2013, "Performance Investigation of Solar-heating Ocean Thermal Energy Conversion," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 1, pp. 43-49. https://doi.org/10.3795/KSME-B.2013.37.1.043