• Title/Summary/Keyword: 반감기

Search Result 528, Processing Time 0.028 seconds

Pharmacokinetics of oxytetracycline in olive flounder (Paralichthys olivaceus) by intramuscular injection (Oxytetracycline을 근육 주사한 넙치 (Paralichthys olivaceus)의 약물동태학적 특성)

  • Jung, Sung-Hee;Choi, Dong-Lim;Kim, Jin-Woo;Jo, Mi-Ra;Seo, Jung-Soo;Ji, Bo-Young
    • Journal of fish pathology
    • /
    • v.22 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • The pharmacokinetic properties of oxytetracycline (OTC) were studied after intramuscular injection to cultured olive flounder, Paralichthys olivaceus. Plasma concentrations of OTC were determined after dosage of 12.5, 25 and 50 ㎎/㎏ body weight in olive flounder (average 600 g, $23{\pm}1{^{\circ}C}$). Plasma samples were taken at 3, 5, 10, 15, 24, 32, 48, 72, 120, 168, 240 and 360 h post-dose. With 25 and 50 ㎎/㎏, the peak plasma concentrations of OTC, which attained at 5 h post-dose, were 0.99 and 1.49 $\mu{g}/m\ell$, respectively. However, the peak plasma concentration of 12.5 ㎎/㎏ was 0.35 $\mu{g}/m\ell$ after 10 h post-dose. Plasma concentrations of OTC were not measurable at 360 h post-dose in all doses. The kinetic profile of absorption, distribution and elimination of OTC in plasma were analyzed fitting to a 1-compartment model by Win-Nonlin program. The following parameters were calculated for 12.5, 25 and 50 ㎎/㎏ body weight, respectively: AUC (the area under the concentration-time curve)?D���D24.98, 44.67 and 50.45 $\mu{g}$ $h/m\ell$ $T_{1/2}$ (half-life) ?D���D0.42, 0.59 and 0.41 h; $T_{max}$ (time for maximum concentration)?D���D8.46, 6.34 and 2.66 h; $C_{max}$ (maximum concentration)?D���D0.30, 0.63 and 1.13 $\mu{g}/m\ell$.

Effect of Antioxidants on the Thermostability of Red Pigment in Prickly Pear (선인장열매 적색색소의 열안정성에 대한 항산화제의 효과)

  • Kim, In-Hwan;Kim, Myung-Hee;Kim, Houng-Man;Kim, Young-Eun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.1013-1016
    • /
    • 1995
  • The color stability of betacyanins and effects of antioxidants from Opuntia dillenii Haw were determined in the fruit juice at temperature up to $90^{\circ}C$. The absorption maxima of betacyanins occurred between 536 nm and 538 nm. When fruit juice was heated at $90^{\circ}C$ for various times, the red color gradually diminished and the absorption maxima slightly shifted toward uv region. The kinetic analysis of the data obtained indicated that the discoloration for betacyanins obeyed first order reaction pattern, when the thermal stability test was performed at $50{\sim}90^{\circ}C$. And the rate constant increased from $1.56{\times}10^{-3}/min\;to\;71.91{\times}10^{-3}/min$ with the half-life decreasing from 444.23 min to 9.64 min. The results also indicated that the thermal stability of pigment decreased with increasing temperature. The energy of activation was 10.94 kcal/mole for the pigment. N-propyl gallate, L-cysteine, and ascorbic acid were added to cactus fruit juice at concentrations of $0.01{\sim}0.3%$ at different temperatures. Npropyl gallate and L-cysteine had a little antioxidant effect on betacyanins stability at $50^{\circ}C\;and\;70^{\circ}C$, whereas ascorbic acid had a great antioxidant effect with the half-life value of 2 to 10 times to that of the control.

  • PDF

Distribution of Antifouling Agent Using Headspace Solid Phase Microextraction(HS-SPME) Method in Southwestern Coast of Korea (HS-SPME법을 이용한 한국 서남해 연안 해역에서의 방오제 분포 특성)

  • Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • We study on the distribution characteristics of antifouling agents such as Sea-nine 211, Irgarol 1051, Diuron using HS-SPME method in southwestern coast of Korea. Short half-life of Sea-nine 211 was distributed in very low concentrations and/or below detection limits in all of the sampling points, both water and sediments samples. Irgarol 1051 was detected to have the highest concentration respectively $6.98{\mu}g/L$, 28.50 ng/g-dry wt in the seawater and sediments, and regional distribution characteristics did not appeared. Strong bioaccumulation and long half-life of Diuron was distributed higher concentration than in all sampling point and was analyzed to have the highest concentration(3882.22 ng/g-dry wt) Mo7(Mokpo)'s sediment. Irgarol 1051 and Diuron distributed in the shipbuilding industry and ship marina are located just at the point to found in high concentrations. In addition, the distribution of the antifouling agent materials were lower in concentration than in inner bay to outter bay in sediments. Antifouling agent materials from these results were contaminated high potential from port and shipbuilding industry located in inner bay.

Pharmacokinetics and tissue levels of a sustained-release recombinant porcine somatotropin in pigs (돼지에서 서방형 성장호르몬의 약물동태 및 조직잔류성)

  • Han, Seong-kyu;Park, Sang-kyoon;Chang, Byoung-sun;Shim, Seog-kwon;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.43-52
    • /
    • 1998
  • 서방형 돼지성장호르몬(sustained-release formulation of porcine somatotropin, PST-SR)을 1주 간격으로 6차례 피하 및 근육주사하고 혈액과 조직중의 돼지 성장호르몬(PST)과 insulin-like growth factor 1(IGF-1)의 농도를 측정하여 다음과 같은 결과를 얻었다. 대조군의 혈중 PST와 IGF-1의 농도는 각각 2.41과 95.2 ng/ml 이었다. 1. PST-SR을 투여한 후 PST의 혈중농도는 8시간만에 최대에 도달하여(30 ng/ml) 곧 감소하였다. 혈중농도 반감기(decay half life)는 91~227시간이었다. IGF-1의 혈중농도는 투여후 12시간에 최대에 도달하였으며(165 ng/ml), 이후 서서히 감소되었고 반감기는 77~99시간이었다. 2. 혈중 PST농도-시간의 자료는 제재에서 PST가 유리되는 과정에는 두단계 즉, 투여후 24시간까지의 유리속도가 빠른 단계와 그 이후의 유리속도가 느린 단계가 있음을 보여주었다. 3. 여섯번의 반복투여기간에는 PST의 혈중농도는 투여직후 증가하여 24시간 이후 다음 투여전까지 지속적으로 감소되는 패턴이 반복되었고, 최종투여후 1주일경에는 정상수준으로 회복되었다. 반면에 투여가 반복됨에 따라 매 투여직후의 PST의 혈중 최고치는 다소 증가되는 경향을 보였다(20~40 ng/ml). IGF-1의 혈중농도는 투여가 반복됨에 따라 누적적인 증가현상이 뚜렷하였으며, 이후 2주일후 까지도 정상농도보다 높게 유지되었다(200ng/ml). 임상용량 투여군에서 PST 및 IGF-1의 혈중농도는 투여경로에 따른 차이는 나타나지 않았다. 4. 최종(6번째) 투여후 6, 8, 10, 14일에 조사한 간장, 신장, 소장, 근육, 지방 및 주사부위의 조직중의 PST 농도는 6일째에 이미 대조군 수준으로 회복되었다. IGF-1의 경우 최종투여후 6일에는 간장, 신장, 소장, 지방조직에서 정상보다 높은 농도로 잔류하나 이후 14일까지 모두 대조군 수준으로 감소되었다. 5. 이상의 결과는 본 실험에서 사용된 서방형 PST제제는 최소 1주간 유효성이 유지되며, 동시에 PST는 투여 6일째에, IGF-1은 투여후 14일에 정상수준으로 회복됨을 보여주고 있다.

  • PDF

Persistence and degradation of herbicide molinate in paddy-soil environment (논토양 환경 중 제초제 molinate의 잔류성과 분해특성)

  • Park, Byung-Jun;Park, Hyeon-Ju;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 2005
  • The herbicide molinate has been detected with high frequency in the main river during the growing season in Korea. To elucidate the exposure of molinate in agricultural environment, the persistence and the degradation characteristics of molinate were investigated in paddy ecosystems. The half-lives of molinate were 4.1 days with soil aquatic system, and 4.2 days in only aquatic system. Initial dissipation rate of molinate in water was greater with soil aquatic system than that of only aquatic system. Photolysis of molinate was occurred about 31.0% of molinate treated in pure water, when irradiated at 5,530 $J/cm^2$ by the xenon lamp, but its hydrolysis was stable. For the accelerated photolysis of molinate in aqueous solution, several photosensitizers were screened, showing that the hydroperoxide($H_2O_2$) and acetone were prominent among the chemical tested. When hydroperoxide and zinkoxide(ZnO) were used as photosensitizer, their photolysis were accelerated greater than 98% and 58% in aqueous solution, respectively. Elution rate of molinate as granular formulations in aqueous system was more than 90% in 30 hour at $35^{\circ}C$. Molinate concentration pattern in paddy water was rapidly decrease from treatment till 7 days in paddy rice field and its half-lives were 3.7 days($Y=1.9258{\times}e^{-0.1865X}$(r=-0.9402)).

Removal of Diclofenac, Ibuprofen and Naproxen using Oxidation Processes (산화공정에서의 Diclofenac, Ibuprofen 및 Naproxen의 제거특성 평가)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Hwang, Young-Do;Roh, Jae-Soon;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.831-838
    • /
    • 2009
  • In order to evaluate a removal characteristic of diclofenac, ibuprofen and naproxen by oxidizing agents, $Cl_2,\;O_3$ and $O_3/H_2O_2$ are used as oxidants in this study. In case of that $Cl_2$ is used for oxidizing pharmaceuticals, ibuprofen is not removed entirely at $Cl_2$ dose range of 0.5~5.0 mg/L for 60 minutes, however, removal tendency of diclofenac and naproxen are so obviously at $Cl_2$ dose higher than 0.5 mg/L. In addition, as $Cl_2$ dose and contact time are increased, the removal rate of diclofenac and naproxen is enhanced. When $O_3$ is used as oxidizing agent, ibuprofen is not eliminated at $O_3$ dose range of 0.2~5.0 mg/L. On the contrary, 72~100% of diclofenac and 49~100% of naproxen are removed at $O_3$ dose of 0.2~5.0 mg/L. From experiments using $O_3/H_2O_2$ as an oxidant, we can find that $O_3/H_2O_2$ is much more effective than $O_3$ only for removal of diclofenac and naproxen. Moreover, the efficiency is raised according to increase of $H_2O_2$ dose, however, experiments using $O_3/H_2O_2$ show that oxidation of pharmaceuticals is less effective as $H_2O_2$ to $O_3$ ratio increased to above approximately 1.0. On reaction rate constant and half-life of diclofenac, ibuprofen and naproxen depending on $Cl_2$, $O_3$ and $O_3/H_2O_2$ dose, an oxidation of pharmaceuticals by $Cl_2$ and $O_3$ particularly has a comparatively high reaction rate constant and short half-life comparing $O_3/H_2O_2$. From above results, we can fine that diclofenac and naproxen can be easily eliminated in oxidation processes.

Time Resolved ESR Studies on Short-Lived Reaction Intermediates Produced by Laser Photolysis of Anthraquinone in Organic Solvents (유기용매에서 Anthraquinone의 광반응에서 생성하는 짧은 수명의 반응중간체에 관한 시간분해 ESR 연구)

  • Hong, Daeil;Yun, Young Hyoun;Sohn, Moo-Jeong;Kim, Kyung-Chan;Kuwata, Keiji
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.237-243
    • /
    • 1995
  • The measurments of neutral semiquinone radicals, which were formed from the laser flash photolysis of anthraquinone (AQ) in the mixed solvents were carried out by the time resolved electron spin resonance (trESR) spectroscopy. The chemically induced dynamic electron polarization (CIDEP) spectra of the neutral semiquinone radical (AQH${\cdot}$) and semiquinone radical anion (AQ${\cdot}$-) were successively detected in the laser flash photolysis of AQ in the mixtures of 2-propanol (PrOH) and triethylamine (TEA). The neutral semiquinone radical was short-lived with the half-life of 0.8 ${\mu}sec$, whereas the semiquinone radical anion was relatively stable and then its cwESR could be observed. The rate constant of the spin-depolarization of semiquinone radical anion was $2.6{\times}10^5 sec^{-1}$ and the decay of the radical anion was the first order reaction with the rate constant of $3.0{\times}10^2\; sec^{-1}$. No CIDEP of semiquinone radical anion was observed in the mixture of PrOH and the lower concentration of TEA than 2 percent. The CIDEP spectrum of the neutral semiquinone radical was detected in the mixture of benzene and TEA with the half-life of 3.0 ${\mu}sec$. The neutral semiquinone radical could not be detected by cwESR. Neither CIDEP nor ESR absorption could be observed in PrOH, TEA or benzene only.

  • PDF

Studies on Persistence of Pesticides in Soils and Crops under Polyethylene Film Mulching Culture;IV. Persistence of Herbicides Alachlor, Pendimethalin and Diphenamid (폴리에틸렌 멀칭재배시(栽培時) 농약(農藥)의 토양(土壤) 및 작물체중(作物體中) 잔류(殘留)에 관한 연구(硏究);제(第)4보(報) 제초제(除草劑) Alachlor, Pendimethalin, Diphenamid의 잔류성(殘留性))

  • Ryang, Hwan-Seung;Moon, Young-Hee;Kim, Nak-Eung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.14-20
    • /
    • 1988
  • The effect of polyethylene film(P.E.) mulching on the degradation of alachlor(N-methoxymethyl-2, 6-diethyl ${\alpha}-chloroacetoanilide$), pendimethalin(3, 4-dimethyl-2, 6-dinitro-N-l-ethylpropylanilide) and diphenamid(N,N-dimethyl-2, 2-diphenylacetamide) in red pepper, peanut, and sesame fields was investigated. In soils under the non-mulching condition the half-lives of alachlor, pendimethalin and diphenamid were 3, 37 and $24{\sim}46$ days, respectively. However, the half-lives of those under the P.E. mulching condition were longer than under the non-mulching condition. The differences in the half-lives between P.E. mulching and non-mulching conditions were about 30 days for pendimethalin and from 20 to 90 days for diphenamid. However, the half-life of alachlor was hardly affected by P.E. mulching. Pendimethalin and alachlor were not detected in the harvasted red peppers, peanuts and sesame under P.E. mulching and non-mulching conditions. But, the residue of diphenamid in peanuts was 0. 147 ppm under the P.E. mulching condition and 0.071 ppm under the non-mulching condition, and the residue of diphenamid in sesame was 0.022 ppm under the P.E. mulching condition and 0.129 ppm under the non-mulching condition. The amounts, however, were below the tolerance limits for pesticide residue.

  • PDF

Dissipation Pattern of Azoxystrobin, Difenoconazole and Iprodione Treated on Field-Grown Green Garlic (노지재배 풋마늘 중 Azoxystrobin, Difenoconazole 및 Iprodione의 잔류특성)

  • Kang, Hye-Rim;Lee, Young-Ju;Lee, Yu-Ri;Han, Guk-Tak;Chang, Hee-Ra;Kim, Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.446-452
    • /
    • 2011
  • BACKGROUND: To investigate the dissipation patterns of 3 pesticides, azoxystrobin, difenoconazole and iprodione, on green garlic after field treatment pesticides were treated as foliar treatment by single application at recommended and double the recommended rates. METHODS AND RESULTS: Residue samples were harvested at 0, 1, 2, 5, 7 and 10 days post-treatment for azoxystrobin and 0, 1, 2, 5, 7, 10, 15 and 21 days post-treatment for difenoconazole and iprodione. After preparation the fortified samples were extracted and analyzed by gas chromotography-electron capture detector (GC-ECD) to determine the residue levels. Recoveries ranged from 87 to 109% for azoxystrobin, difenoconazole and iprodione at two different levels. The limit of Quantification (LOQ) values were 0.002 mg/kg for azoxystrobin and difenoconazole and 0.01 mg/kg for iprodione. CONCLUSION(S): Half-lives of azoxystrobin, difenoconazole and iprodione in green garlic after treatment were 1.2, 3.8 and 3.2 days at recommended and 1.4, 3.3 and 3.2 at double the recommended rate, respectively. Residue level of azoxystrobin, difenoconazole and iprodione in green garlic were below the maximum residue limits (MRLs) at 0 day, 0 day and 5 days, respectively. Therefore, these pesticide were considered that residues was satisfied to the requirement of domestic trade related to the consumer safety.

Influence of soil organic matter and moisture on the persistence of the herbicide mefenacet in soils (제초제 Mefenacet의 토양 중 분해에 미치는 토양유기물과 토양수분에 의한 영향)

  • Kim, Sung-Min;Cho, Il-Kyu;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.182-187
    • /
    • 2003
  • In order to elucidate a degradation characteristics of herbicide mefenacet in soil, the persistence in soils was studied under laboratory conditions for $90\sim120$ days at $28^{\circ}C$. Mefenacet residues were determined from the two soils which pre-treated by sterilization and flooding, respectively. Non-sterilized upland soil was used as a control. When 70 days elapsed from application time, $55\sim63%$ of mefenacet applied were dissipated in control soils. However, $32\sim33%$ of mefenacet applied were dissipated in the sterilized soils and $33\sim35%$ was dissipated in the flooded soils. 까 lese results indicated that the degradation of mefenacet was assumed to be due to microorganism, especially aerobic microbes. In order to elucidate the influence of water content on the persistence of mefenacet in soil, water content in soils was adjusted to 20, 50, and 80% of the water-holding capacity(Field capacity, WHC). The half-life of mefenacet in soil containing 20% and 50% of WHC were 82 and 73 days, respectively, after incubation for 90 days. However, the half-life in soil containing 80% of WHC was shortened to 61 days. These results indicated that degradation of mefenacet in soil was influenced by the activity of soil microorganism, organic matter content and water content.