DOI QR코드

DOI QR Code

Distribution of Antifouling Agent Using Headspace Solid Phase Microextraction(HS-SPME) Method in Southwestern Coast of Korea

HS-SPME법을 이용한 한국 서남해 연안 해역에서의 방오제 분포 특성

  • Han, Sang-Kuk (The Faculty of Ocean System Engineering, Mokpo National Maritime University)
  • 한상국 (목포해양대학교 해양시스템공학부)
  • Received : 2011.07.13
  • Accepted : 2012.04.23
  • Published : 2012.04.30

Abstract

We study on the distribution characteristics of antifouling agents such as Sea-nine 211, Irgarol 1051, Diuron using HS-SPME method in southwestern coast of Korea. Short half-life of Sea-nine 211 was distributed in very low concentrations and/or below detection limits in all of the sampling points, both water and sediments samples. Irgarol 1051 was detected to have the highest concentration respectively $6.98{\mu}g/L$, 28.50 ng/g-dry wt in the seawater and sediments, and regional distribution characteristics did not appeared. Strong bioaccumulation and long half-life of Diuron was distributed higher concentration than in all sampling point and was analyzed to have the highest concentration(3882.22 ng/g-dry wt) Mo7(Mokpo)'s sediment. Irgarol 1051 and Diuron distributed in the shipbuilding industry and ship marina are located just at the point to found in high concentrations. In addition, the distribution of the antifouling agent materials were lower in concentration than in inner bay to outter bay in sediments. Antifouling agent materials from these results were contaminated high potential from port and shipbuilding industry located in inner bay.

HS-SPME법을 이용하여 한국 서남해 연안해역에서 Sea-nine 211, Irgarol 1051, Diuron과 같은 방오제의 분포 특성을 검토하였다. 반감기가 짧은 Sea-nine 211은 모든 시료채취지점 및 지역의 해수와 퇴적물에서 아주 낮은 농도 또는 검출한계 이하로 분포하였다. Irgarol 1051은 해수 및 퇴적물에서의 최고 농도가 각각 $6.98{\mu}g/L$, 28.50 ng/g-dry wt로 검출되었으며, 지역별 분포 특성은 나타나지 않았다. 반감기가 가장 길고 생물 농축성이 강한 Diuron은 모든 시료채취 지점에서 Sea-nine 211과 Irgarol 1051보다 높은 농도로 분포하였으며, Mo7(목포)의 퇴적물에서 최고농도(3882.22 ng/g-dry wt)로 분석되었다. Irgarol 1051과 Diuron은 조선산업단지 및 선박정박지가 위치하고 있는 지점에서 높은 농도로 분포하는 것으로 나타났다. 또한 퇴적물에서의 방오제 분포는 내만에서 외만으로 그 농도가 낮아졌다. 이러한 결과로부터 방오제는 내만에 위치하고 있는 항구나 조선산업단지로부터 오염될 가능성이 높을 것으로 판단된다.

Keywords

References

  1. 공충식(2011), 우리나라 연안 해역에서 신방오제 분포 특성에 관한 연구, 목포해양대학교 석사학위논문, pp. 35-79.
  2. 김규용, 박미옥(2001), 광양만내 유기주석화합물의 해수, 퇴적물, 생물종 농도 및 분포 상관관계, 한국수산과학회지, 제34권, 제4호, pp. 291-298.
  3. 박정채(2008), 연안 퇴적물에서 방오제의 분포특성에 관한 연구, 전남대학교, 석사학위논문, pp. 54-80.
  4. 신영범, 심원준, 오재룡, 전중균, Dmitry A., Agafonova I.(2000), 환경생체지표를 이용한 유기주석화합물의 해양 동물 독성동태연구, 한국해양환경공학회 2000년도 춘계학술대회 논문집, pp. 147-156.
  5. 이동섭, 박천호, 성락규, 이성언(2009), 한국 연안의 새로운 방오제의 농도변화 모니터링, 제43회 한국분석과학회 추계학술대회 초록집, p. 214.
  6. 이성언, 원호식, 이동섭(2008a), GC/MS를 이용한 한국연안의 새로운 방오제 분석, 한국분석과학회지, 제21권, pp. 459-473.
  7. 이성언, 유재범, 박재홍, 이용우, 원호식, 이동섭(2008b), 한국연안의 갯벌 중에 유기주석화합물 및 새로운 방오도료제의 분석, 한국해양환경공학회지, 제11권, 제1호, pp. 1-12.
  8. 이정훈(2005), 어류체내 유기주석화합물, 노닐페놀 및 비스페놀 A 오염의 농도특성에 관한 연구, 전남대학교, 석사학위논문, pp. 43-63.
  9. 조근옥(2011), 한국연안 대수리체내 유기주석화합물 분포와 임포섹스 현상의 장기변동에 관한 연구, 전남대학교, 석사학위논문, pp. 47-56.
  10. 환경관리연구소(2005), 선저오염 방지제가 해양 플랑크톤에 미치는 환경 위해성 및 평가, 제13권, 제8호, 통권147호, pp. 13-18.
  11. Senda, T.(2009), 선박페인트에 의한 해양환경문제 및 대응, 첨단환경기술, 제8권, pp. 12-15.
  12. Anonymous, N.(2001), International Convention on the Control of Harmful Anti-fouling Systems on Ships. IMO, London, 5 October 2001, pp. 22-25.
  13. Bennett, R. F.(1996), Industrial Manufacture and Aplications of Tributyltin Compounds, In: Mora S.J.(Ed.), Case study of an Environmental Contaminant, Cambridge University Press, Cambridge, pp. 21-61.
  14. Biselli, S., K. Bester, H. Huhnerfuss and K. Fent(2000), Concentrations of the Antifouling Compound Irgarol 1051 and of Organotins in Water and Sediments of German North and Baltic Sea Marinas, Marine Pollution Bulletin, Vol. 40, pp. 233-243. https://doi.org/10.1016/S0025-326X(99)00177-0
  15. Chou, C. C. and M. R. Lee(2005), Determination of Organotin Compounds in Water by Headspace Solid Phase Microextraction with Gas Chromatography - Mass Spectrometry, Journal of Chromatography A, Vol. 1064, pp. 1-8. https://doi.org/10.1016/j.chroma.2004.08.166
  16. Dubey, S. K. and U. Roy(2003), Biodegradation of Tributyltins(organotins) by Marine Bacteria, Applied Organometallic Chemistry, Vol. 17, pp. 3-8. https://doi.org/10.1002/aoc.394
  17. Eisert, R. and J. Pawliszyn(1997), Design of automated solid-phase microextraction for trace analysis of organic compounds in aqueous samples, Journal of Chromatography A, Vol. 776, pp. 293-303. https://doi.org/10.1016/S0021-9673(97)00332-4
  18. Field, J. A., R. L. Reed, T. E. Sawyer and S. M. Griffith(2003), Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production, J. Environ. Qual., Vol. 32, pp. 171-179. https://doi.org/10.2134/jeq2003.171
  19. Hakkarainen, M.(2007), Developments in multiple headspase extration, J. Biochem. Biophysic. method, Vol. 70, pp. 229-233. https://doi.org/10.1016/j.jbbm.2006.08.012
  20. Hall, L. W., J. M. Giddings, K. R. Solomon and R. Balcomb(1999), An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints, Cri. Rev Toxicol., Vol. 29, pp. 367-437.
  21. Lambropoulou, D. A., V. A. Sakkas and T. A. Albanis(2002), Headspace solid phase microextraction for the analysis of the new antifouling agents Irgarol 1051 and Sea Nine 211 in natural waters, Analytica Chimica Acta, Vol. 468, pp. 171-180. https://doi.org/10.1016/S0003-2670(02)00600-1
  22. Lambropoulou, D. A., V. A. Sakkas and T. A. Albanis(2003), Determination of antifouling compounds in marine sediments by solid-phase microextraction coupled to gas chromatography-mass spectrometry, Journal of Chromatography A, Vol. 1010, pp. 1-8. https://doi.org/10.1016/S0021-9673(03)01022-7
  23. Lambropoulou, D. A., I. K. Konstantinou and T. A. Albanis(2007), Recent developments in headspace microextraction techniques for the analysis of environmental contaminants in different matrices, Journal of Chromatography A, Vol. 1152, pp. 70-96. https://doi.org/10.1016/j.chroma.2007.02.094
  24. Liu, D., G. J. Pacepavicius, R. J. Lau, Y. L. Maguire, H. Okamura and I. Aoyama(1999), Mercuric chloride-catalyzed hydrolysis of the new antifouling compound irgarol 1051, Water Research, Vol. 33, pp. 155-163. https://doi.org/10.1016/S0043-1354(98)00186-9
  25. Llompart, M., K. Li and M. Fingas(1998), Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air, Journal of Chromatography A, Vol. 824, pp. 53-61. https://doi.org/10.1016/S0021-9673(98)00613-X
  26. Martinez, K., I. Ferrer and D. Barcelo(2000), Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, Journal of Chromatography A, Vol. 879, pp. 27-37. https://doi.org/10.1016/S0021-9673(00)00307-1
  27. Pawliszyn, J.(2000), Extraction/Solid Phase Microextraction, Encyclopedia of Separation Science, pp. 1416-1424.
  28. Shade, W. D., S. S. Hurt, A. H. Jacobson and K. H. Reinert(1993), Ecological risk assessment of a novel marine antifoulant, Environ. Toxicol. Risk Assess. ASTM STP, Vol. 1216, pp. 381-408
  29. Tolosa, I. and J. W. Readman(1996), Simultaneous analysis of the antifouling agents: tributyltin, triphenyltin and IRGAROL 1051 in marina water samples, Analytica Chimica Acta, Vol. 335, pp. 267-274. https://doi.org/10.1016/S0003-2670(96)00349-2
  30. Voulvoulis, N., M. D. Scrimshaw and J. N. Lester(1999), Analytical methods for the determination of 9 antifouling paint booster biocides in estuarine water samples, Chemosphere, Vol. 38, pp. 3503-3516. https://doi.org/10.1016/S0045-6535(98)00580-3
  31. Voulvoulis, N., M. D. Scrimshaw and J. N. Lester(2000), Occurrence of Four Biocides Utilized in Antifouling Paints, as Alternatives to Organotin Compounds, in Waters and Sediments of a Commercial Estuary in the UK, Marine Pollution Bulletin, Vol. 40, pp. 938-946. https://doi.org/10.1016/S0025-326X(00)00034-5

Cited by

  1. 신규방오도료물질(Diuron, Irgarol)이 말똥성게(Hemicentrotus pulcherrimus)의 배아발생과 지연에 미치는 독성영향 vol.38, pp.4, 2020, https://doi.org/10.11626/kjeb.2020.38.4.518