• Title/Summary/Keyword: 바이오 흡착제

Search Result 34, Processing Time 0.027 seconds

Characteristics of Heavy Metal Removal from Aqueous Solutions using Leather Industry by-products (피혁산업 부산물에 의한 용존 중금속 제거 특성)

  • Kim, Keun-Han;Lee, Nam-Hee;Paik, In-Kyu;Park, Jae-Hyung;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.417-426
    • /
    • 2010
  • In this study, ten different bio-adsorbents were prepared by immobilization of vegetable tannins such as mimosa(Catechol Tannin) and chestnut(Pyrogallol Tannin) on the collagen matrix which was derived from during leather manufacturing processing. Removal efficiency of Cu(II), Cd(II), Zn(II), Pb(II), Cr(III) by each bio-adsorbent in synthetic wastewater was evaluated by a laboratory-scale batch reactor at different reaction conditions. When mimosa was used as a vegetable tannin, the penetration efficiency of mimosa into the inner bundle of fiber depended on the dose of the naphthalene condensated penetrant; 3% ${\geq}$ 1.5% > 0%. For all bio-adsorbents, removal of heavy metal ions was not observed below pH 3.0 but was rapidly increased between pH 3.0 and 6.0, showing near complete removal of all heavy metal ions except Zn(II) above pH 6.0. Removal of Cr(III) was quite similar for all bio-adsorbents while removal of Cu(II), Zn(II) and Pb(II) was higher by bio-adsorbents immobilized with chestnut than that by mimosa. Adsorption of Pb(II) and Cu(II) by S10 bio-adsorbent was little affected by the presence of monovalent and divalent electrolytes as well as variation of 1000 times ionic concentration with $NaNO_3$.

Evaluation of Mesoporous Alumina Adsorbent for the Purification of Paclitaxel (Paclitaxel 정제를 위한 메조기공 알루미나 흡착제 평가)

  • Oh, Hyeon-Jeong;Jung, Kyeong Youl;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.176-182
    • /
    • 2013
  • Several types of mesoporous alumina adsorbents with different physical properties were prepared by spray pyrolysis and were used for the separation/purification of the anticancer agent paclitaxel. The pore diameter of the adsorbents had a greater effect than did the surface area and the pore volume on the removal of plant-derived impurities. An appropriate pore diameter (~10.8 nm) was required for effective impurity removal. At a constant pore diameter, the surface area of the adsorbent affected not only the purity but also the yield of paclitaxel. Also, increasing the surface area of the adsorbent resulted in an increase in the adsorption of paclitaxel and impurities (biomass-derived tar and wax components). Removal of these impurities was confirmed by HPLC analysis of the absorbent after the treatment and TGA of the organic substances that were bound to the adsorbent.

Adsorption of Pb and Cu from Aqueous Solution by β-Glucan Crosslinked with Citric Acid (베타글루칸과 구연산의 교차결합 바이오 폴리머 흡착제를 이용한 수용액내 납과 구리의 흡착)

  • Jeon, Han Gyeol;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.367-376
    • /
    • 2022
  • One of biopolymer, β-glucan (BG) chains were crosslinked by citric acid under the heating condition for the adsorption of Pb and Cu ions in the aqueous solution. The variation of functional groups on BG itself and crosslinked β-glucan (CBG) with their surface adsorption characteristics were investigated by FTIR and SEM-EDX. Adsorption kinetic results showed that adsorption of Pb and Cu onto the CBG followed the pseudo-second-order kinetic model and intra-particle diffusion model. The Langmuir adsorption model was depicted better adsorption characteristics than the Freundlich model. The adsorption capacities of Pb and Cu onto the CBG estimated by the Langmuir model were 59.70 and 23.44 mg/g, respectively. This study suggested that CBG may act as an eco-friendly adsorbent for the adsorption of Pb and Cu in the aqueous solution.

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.

Separation Behavior of Paclitaxel and Its Semi-synthetic Precursor 10-Deacetylpaclitaxel from Plant Cell Cultures (식물세포배양으로부터 파클리탁셀 및 이의 반합성 전구체 10-디아세틸파클리탁셀의 분리 양상)

  • Lee, Chung-Gi;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.89-93
    • /
    • 2016
  • In this study, we investigated the separation behavior of the anticancer agent paclitaxel and its semi-synthetic precursor 10-deacetylpaclitaxel (10-DAP) from plant cell cultures. As a result of sequential separation/purification performed by biomass extraction with solvent, liquid-liquid extraction, adsorbent treatment, hexane precipitation, and fractional precipitation, the adsorbent treatment was found to be the most effective in separating and recovering 10-DAP from paclitaxel. The optimal adsorbent type, crude extract/adsorbent ratio, and adsorbent treatment temperature were sylopute, 1:1.5 (w/w), and $20^{\circ}C$, respectively. The separation/recovery of 10-DAP from paclitaxel was 74.1% in adsorbent treatment process under optimal conditions.

Optimization of Adsorbent Treatment Process for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis (주목 식물세포(Taxus chinensis)배양으로부터 파클리탁셀 정제를 위한 흡착제 처리 공정 최적화)

  • Lee, Chung-Gi;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.497-502
    • /
    • 2014
  • Biomass-derived tar and waxy compounds have a highly negative effect on the separation and purification of paclitaxel and should be removed prior to final purification. Adsorbent treatment is a simple, efficient method for removal of tar and waxy compounds from plant cell cultures. In this study, we optimized the important process parameters (adsorption temperature, time, solvent type and adsorbent amount) of adsorbent treatment with Sylopute to remove the tar and waxy compounds in a pre-purification step. The optimal adsorption temperature, adsorption time, solvent type, and crude extract/Sylopute ratio were $30^{\circ}C$, 15 min, methylene chloride, and 1:1(w/w), respectively. This result could be confirmed by HPLC analysis of the absorbent after treatment and TGA of the organic substances that were bound to the adsorbent. In adsorbent treatment step, the purity seemed to show a small improvement but this treatment had a significant effect on convenience and feasibility of following steps by the removal of tar and waxy compounds.

Biosorption and Development of Biosorbent by using Seaweed, Sugassum thunbergii (해조류, Sargassum thunbergii를 이용한 중금속의 바이오 흡착제의 개발)

  • SUH Kuen-Hack;LEE Hak-Sung;SUH Jung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • Biosorptions of Cr and Pb were evaluated for 23 species of marine algae collected from a Korean coast. Among a variety of species for biosorbent potential, Sargassum species showed higher uptake capacity for Cr and Pb. An adsorption equilibrium was reached in about 1 hr for Cr and 30 min for Pb. The maximum uptake capacity was136.0 mg Cr/g biomass and 232.5 mg Pb/g biomass, respectively. In Pb biosorption in the column packed with Sargassum tbunbertii, 300 and 200 bed Tolumes at the concentration of 50 mg/L in feed solution were processed at the column residence time of 5 and 10 min before the column breakthrough point occurred. The elutions with 0.1 M HCl solution were more than $95{\%}$. The high efficiency of continous biesorntion and elution (3 cycles) indicated that Sargassum thunbergii was an effective biosorbent for Pb recovery.

  • PDF

Behaviour of Condensing Gaseous Species by Injection of Liquid Adsorbents (HMDS) in Combustion Facility (액체상흡착제(HMDS) 주입조건에 따른 응축성 가스상 물질의 거동특성 비교)

  • Kim, Yong-Gu;Lee, Sang-Yul;Bong, Choon-Keun;Kim, Hyun-sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.285-292
    • /
    • 2015
  • In this study, we were clearly identify the behaviour characteristics on particle size distribution of a condensing species by injection condition of HMDS (Hexa Methyl Di-Silazane, silica precursor that is one of liquid adsorbents) to remove condensing gaseous species as using pyroligneous liquor generated during carbonization process of biomass as precursor of condensing gaseous species. When using HMDS to remove the condensing gaseous species by growth machanism of particles, we could be controlled properly particles size such as amount of adsorbent injection, residence time, heating temperature and MFC flux. Especially, in case of using the silica precursor, in consideration of the physical and chemical properties of the boiling point, the specific gravity and the molecular weight, we found that the condensing species could be effectively controlled by particles granulation.

Study on the Removal of Carbon Dioxide in the Subway Cabin Using Zeolite Type Carbon Dioxide Adsorbent (제올라이트계 이산화탄소 흡착제를 사용한 지하철 객실 내부의 이산화탄소 제거에 관한 연구)

  • Cho, Young-Min;Park, Duck-Shin;Kwon, Soon-Bark;Lee, Ju-Yeol;Hwang, Yun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • High concentration of carbon dioxide at subway cabin is one of the serious environmental concerns because carbon dioxide causes drowsiness, headache, and nervelessness of passengers. Ministry of Environment set a guideline for indoor carbon dioxide levels in train or subway in 2007. In this study, a carbon dioxide removal system for subway cabin was developed and tested using a test subway cabin. Various types of modified zeolites were used as the adsorbent of carbon dioxide. The tested zeolites were applied to the subway cabin, and showed high potential to lower the indoor $CO_2$ level.

Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal (K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구)

  • Jang, Kil Nam;Song, Young Sang;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.286-293
    • /
    • 2017
  • The goal of this paper was to improve the performance of the adsorbent to remove $H_2S$. Pellet type adsorbents were prepared by using four kinds of materials ($Fe_2O_3$, $Ca(OH)_2$, Activated carbon, $Al(OH)_2)$ for use as a basic carrier. As the results of $H_2S$ adsorption tests, $Fe_2O_3$ and Activated Carbon improved the adsorption performance of $H_2S$ by 1.5 ~ 2 times, and $Ca(OH)_2$ and $Al(OH)_2$ showed no effect on $H_2S$ adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and $K_2CO_3$ were added on the carriers, respectively. As the results of $H_2S$ adsorption tests, adsorbent containing $K_2CO_3$ showed the best performance. As a result of $H_2S$ adsorption test with varying $K_2CO_3$ content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of $K_2CO_3$ and adsorption performance decreased to 30 wt%. The $H_2S$ adsorption performance was modeled by using Thomas model with varying $K_2CO_3$ contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of $K_2CO_3$ up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of $H_2S$ adsorbent is improved but also life time of the adsorbent is increased.