DOI QR코드

DOI QR Code

Evaluation of Mesoporous Alumina Adsorbent for the Purification of Paclitaxel

Paclitaxel 정제를 위한 메조기공 알루미나 흡착제 평가

  • Oh, Hyeon-Jeong (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 오현정 (공주대학교 화학공학부) ;
  • 정경열 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2013.02.07
  • Accepted : 2013.03.22
  • Published : 2013.06.28

Abstract

Several types of mesoporous alumina adsorbents with different physical properties were prepared by spray pyrolysis and were used for the separation/purification of the anticancer agent paclitaxel. The pore diameter of the adsorbents had a greater effect than did the surface area and the pore volume on the removal of plant-derived impurities. An appropriate pore diameter (~10.8 nm) was required for effective impurity removal. At a constant pore diameter, the surface area of the adsorbent affected not only the purity but also the yield of paclitaxel. Also, increasing the surface area of the adsorbent resulted in an increase in the adsorption of paclitaxel and impurities (biomass-derived tar and wax components). Removal of these impurities was confirmed by HPLC analysis of the absorbent after the treatment and TGA of the organic substances that were bound to the adsorbent.

바이오매스 유래 항암물질 paclitaxel 정제를 위하여, 물리적 특성이 다른 메조기공 알루미나 흡착제를 제조하여 흡착제 처리 효과를 조사하였다. 알루미나의 물리적 특성 중 표면적과 기공부피 보다는 기공크기(기공지름)이 흡착제 처리효과에 많은 영향을 미쳤다. 특히 적절한 기공크기(기공지름: 10.8 nm)에서 식물유래 타르 및 왁스 성분을 포함한 불순물을 제거하는데 가장 효과적이었다. 일정한 기공크기에서 흡착제의 표면적은 paclitaxel 순도뿐만 아니라 수율에 많은 영향을 미치며 흡착제의 표면적이 증가할수록 paclitaxel과 불순물(바이오매스 유래 타르 및 왁스 성분 포함)의 흡착 정도는 증가하였다. 이러한 불순물 제거 효과는 흡착제 처리 후 흡착제를 메탄올로 세척하여 HPLC로 분석한 결과와 흡착제에 붙은 유기물의 TGA 정량 분석 결과로도 확인할 수 있었다.

Keywords

References

  1. Baloglu, E. and D. G. Kingston. 1999. A new semisynthesis of paclitaxel from baccatin III. J. Nat. Prod. 62: 1068-1071. https://doi.org/10.1021/np990040k
  2. Castor, T. P. 1998. Method and apparatus for isolating therapeutic compositions from source materials. US Patent 5, 750,
  3. Choi, H. K., T. L. Adams, R. W. Stahlhut, S. I. Kim, J. H. Yun, B. K. Song, J. H. Kim, S. S. Hong, and H. S. Lee. 1999. Method for mass production of taxol by semi-continuous culture with Taxus chinensis cell culture. US Patent 5,871, 979.
  4. ElSohly, H. N., E. M. Jr. Croom, M. A. ElSohly, and J. D. McChesney. 1997. Methods and compositions for isolating taxanes. US Patent 5, 618,538.
  5. Gamborg, O. L., R. A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  6. Gregg, S. J. and K. S. W. Sing. 1982. Adsorption, surface area and porosity, pp. 41-110. 2nd Ed. Academic Press, New York.
  7. Hanaoka, T., K. Sakanishi, and T. Minowa. 2004. Hot gas cleaning of producer gas from biomass gasification using carbonaceous materials as a bed additive. J. Jpn. Inst. Energy 83: 828-831. https://doi.org/10.3775/jie.83.828
  8. Hsiao, J. R., S. F. Leu, and B. M. Huang. 2009. Apoptotic mechanism of paclitaxel-induced cell deathin human head and neck tumor cell lines. J. Oral. Pathol. Med. 38: 188-197. https://doi.org/10.1111/j.1600-0714.2008.00732.x
  9. Hu, X., T. Hanaoka, K. Sakanishi, T. Shinagawa, S. Matsui, M. Tada, and T. Iwasaki. 2007. Removal of tar model compounds produced from biomass gasification using activated carbons. J. Jpn. Inst. Energy 86: 707-711. https://doi.org/10.3775/jie.86.707
  10. Hyun, J. E. and J. H. Kim. 2008. Microwave-assisted extraction of paclitaxel from plant cell cultures. Korean J. Biotechnol. Bioeng. 23: 281-284.
  11. Jang, H. R., H. J. Oh, J. H. Kim, and K. Y. Jung. 2013. Synthesis of mesoporous spherical silica via spray pyrolysis : pore size control and evaluation of performance in paclitaxel prepurification. Micropor. Mesopor. Mater. 165: 219-227. https://doi.org/10.1016/j.micromeso.2012.08.010
  12. Kim, J. H., H. K. Choi, S. S. Hong, and H. S. Lee. 2001. Development of high performance liquid chromatography for paclitaxel purification from plant cell cultures. J. Microbiol. Biotechnol. 11: 204-210.
  13. Kim, J. H., I. S. Kang, H. K. Choi, S. S. Hong, and H. S. Lee. 2002. A novel pre-purification for paclitaxel from plant cell cultures. Process Biochem. 37: 679-682. https://doi.org/10.1016/S0032-9592(01)00247-3
  14. Kim, S. G. and J. H. Kim. 2009. Effect of pH on fractional precipitation for pre-purification of paclitaxel from plant cell cultures. Korean J. Chem. Eng. 26: 449-452. https://doi.org/10.1007/s11814-009-0076-z
  15. Kolewe, M. E., V. Gaurav, and S. C. Roberts. 2008. Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol. Pharm. 5: 243-256. https://doi.org/10.1021/mp7001494
  16. Kim, J. H. 2006. Paclitaxel : recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1-10.
  17. Kim, J. H. 2009. Optimization of liquid-liquid extraction conditions for paclitaxel separation from plant cell cultures. KSBB J. 24: 212-215.
  18. Lippens, B. C. and J. J. Steggerda. 1970. Active alumina, pp. 171-211. In B. G. Linsen (ed.), Physical and chemical aspects of adsorbents and catalysts. Academic press, London.
  19. Mastral, A. M., T. Garcia, M. S. Callen, M. V. Navarro, and J. Galban. 2001. Removal of naphthalene, phenanthrene and pyrene by sorbents from hot gas. Environ. Sci. Technol. 35: 2395-2400. https://doi.org/10.1021/es000152u
  20. Oberlander, R. K. 1984. Aluminas for catalysts: their preparation and properties, pp. 63-112. In B. E. Leach (ed.), Applied inderstrial catalysis. Academic press, Orlando.
  21. Oh, H. J., H. R. Jang, K. Y. Jung, and J. H. Kim. 2012. Evaluation of adsorbents for separation and purification of paclitaxel from plant cell cultures. Process Biochem. 47: 331-334. https://doi.org/10.1016/j.procbio.2011.11.004
  22. Pyo, S. H., B. K. Song, C. H. Ju, B. H. Han, and H. J. Choi. 2005. Effects of adsorbent treatment on the purification of paclitaxel from cell cultures of Taxus chinensis and yew tree. Process Biochem. 40: 1113-1117. https://doi.org/10.1016/j.procbio.2004.03.004
  23. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim. 2004. A large-scale purification of paclitaxel from plant cell cultures of Taxus chinensis. Process Biochem. 39: 1985- 1991. https://doi.org/10.1016/j.procbio.2003.09.028
  24. Rao, K. V., J. B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R. M. Davies, and R. Baxley. 1995. A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003-1010. https://doi.org/10.1023/A:1016206314225
  25. Rao, K. V. 1997. Method for the isolation and purification of taxol and its natural analogues. US Patent 5,670, 673.