• Title/Summary/Keyword: 바이오 에탄올

Search Result 419, Processing Time 0.032 seconds

Ginsenoside Compositions and Antioxidant Activity of Cultured and Mountain Ginseng (장뇌삼과 재배삼의 ginsenoside 함량과 항산화활성 추정)

  • Joung, Eun-Mi;Hwang, In-Guk;Lee, Min-Kyeng;Cho, Seong-Koo;Chung, Bong-Hwan;Jo, Suk-Ja;Lee, Sang-Hwa;Lee, Jun-soo;Jeong, Heon-Sang
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.61-67
    • /
    • 2010
  • This study was conducted to investigate the antioxidant activities and ginsenoside compositions of 4-year-old cultured ginseng roots (4CGR), 4-year-old mountain ginseng roots (4MGR) and leaves (4MGL), and 8-year-old mountain ginseng roots (MGR) and leaves (8MGL). Ginseng root and leaves were extracted with water and 80% ethanol. Crude saponin content of 4CGR was 3.85% (d.b.) and the contents of 4MGR, 4MGL, 8MGR and 8MGL were 6.75, 8.57, 6.53 and 7.54% (d.b.), respectively. 4CGR showed the highest content of ginsenoside-$Rh_1$ (6.07 mg/g), 4MGR showed the highest content of ginsenoside-$Rb_1$ (11.63 mg/g), 4MGL showed the highest content of ginsenoside-Re (24.35 mg/g), 8MGR showed the highest content of ginsenoside-$Rh_1$ (19.77 mg/g), and 8MGL showed the highest content of ginsenoside-Re (20.43 mg/g). Total antioxidant activity (AEAC) was ranged from 5.56 at 4MGR to 20.67 mg AA eq/g at 8MGL.

A New Sweetpotato Cultivar for Use of Bioethanol 'Daeyumi' (바이오에탄올용 고구마 신품종 '대유미')

  • Lee, Joon-Seol;Ahn, Young-Sup;Chung, Mi-Nam;Kim, Hag-Sin;Jeong, Kwang-Ho;Bang, Jin-Ki;Song, Yeon-Sang;Shim, Hyeong-Kwon;Han, Seon-Kyeong;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.674-678
    • /
    • 2010
  • A new sweetpotato variety, 'Daeyumi', was developed by Bioenergy Crop Research Center, National Institute of Crop Science (NICS), RDA in 2008. This variety was obtained from the cross between 'Jinhongmi' and 'Xusju 18' in 2000. The seedling and line selections were performed from 2001 to 2003, preliminary and advanced yield trials were carried out from 2004 to 2005, and the regional yield trials were conducted at six locations from 2006 to 2008. 'Daeyumi' has cordate leaf, green vine and petiole, elliptic storage root, red skin and yellow flesh color of storage root. This variety is also resistant to Fusarium wilt and nematode. The starch value was 25.9%, ethanol yield was 418 L/Ton, which was 7% higher than that of 'Yulmi' variety, and the total sugar content was 2.47 g/100g, dry weight. 'Daeyumi's initial temperature of starch gelatinization was lower, 76.2$^{\circ}C$, and the retrogradation process was earlier than 'Yulmi'. The average yield of storage root was 27.8 ton/ha in the regional yield trials, which was 36% higher than that of 'Yulmi' variety. Number of storage roots over 50 gram per plant was 3.0, and the average weight of one storage root was 152 gram. This variety can be used for the production of bioethanol and starch processing.

Oil Extraction and Biodiesel Production from Micro-Algae Pre-treated with Microwave (Microwave를 이용한 미세조류로부터 오일 추출 및 바이오디젤 생산)

  • Kim, Deogkeun;Choi, Byoungyun;Kim, Sungmin;Oh, Youkwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.250.2-250.2
    • /
    • 2010
  • 빛과 공기 중의 이산화탄소를 고정화하여 생성되는 바이오매스(biomass)로부터 다양한 에너지 및 물질을 생산하는 연구는 석유고갈과 환경문제 해결의 한 방안으로서 활발히 진행되어 왔으며, 앞으로도 그 지속 가능성과 환경 친화성에 의해 바이오에너지 이용 및 보급은 꾸준한 증가세를 보일 것으로 전망된다. 바이오디젤, 바이오에탄올의 경우는 미국, 브라질, EU, 한국 등에서 상용화되어 사용되고 있으며 그 생산량이 계속적으로 증가하고 있다. 하지만, 바이오연료의 보급 증가는 식량 자원과의 충돌과 열대우림 파괴 등의 부작용을 일으키고 있다. 이러한 문제 해결의 일환으로 단위면적당 생산성이 대두, 유채보다 월등한 것으로 보고되는 미세조류에 대한 관심이 증가하고 있으며 우수 미세조류종 개발, 미세조류 고속배양 및 수확, 미세조류로부터 에너지 및 유용물질, 소재 생산에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 미세조류로부터 바이오디젤 원료유를 생산하기 위해 Soxhlet을 이용한 추출 방법을 이용하였다. 추출되는 오일은 사용 용매의 극성에 따라 물성과 추출 효율에 차이가 큰 것으로 나타났다. 강한 극성의 용매일 경우, 엽록소와 단백질이 같이 추출되는 문제가 있으며 약한 극성 용매는 세포벽의 방해로 용매가 세포내부로 흡수되지 못하는 문제가 있다. 추출 효율이 높은 극성용매의 경우 불순물을 제거해야 고순도의 바이오디젤의 생산이 가능하고 비극성 용매는 추출 오일의 물성은 좋으나 수율이 매우 낮게 측정되었다. 이러한 동시추출을 방지함과 동시에 추출 효율을 높이기 위해 본 연구에서는 세포벽 파괴 후 용매추출하는 방법으로서 미세조류를 Microwave에 노출시켜 오일 추출율을 증가시키는 전처리 연구를 수행하였다. 전처리시, Microwave에 의한 열 발생은 미세조류를 탄화시키기 때문에 열매체로서 물을 혼합하여 탄화를 방지하고 세포벽 내외부의 가열효과로 세포벽을 파괴하고자 하였다. Microwave에 의한 에너지 손실을 줄이며 세포벽 파괴에 효과적인 수분혼합비를 조사하였으며 Microwave에 노출 후 잔류수분을 건조하고 효율적으로 용매를 접촉시키기 위해 분쇄를 수행하였다. 모든 전처리 반응을 거친 미세조류에서 약 2배 증가된 추출수율을 얻을 수 있었으며, SEM을 통해 전처리 미세조류와 미전처리 미세조류를 분석해본 결과 전처리 미세조류의 다공성이 증가함을 확인하였다. 또한, 90%의 메탄올에 미세조류를 녹여 엽록소 함유량을 측정한 결과, 전처리 미세조류의 엽록소가 미전처리 미세조류보다 약 7배가량 감소함을 확인할 수 있었다.

  • PDF

Effect of torrefaction on enzymatic saccharification of lignocellulosic biomass (목질계 바이오매스의 효소당화에서 반탄화 전처리 영향)

  • Choi, Hyoyeon;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • This study is to investigate the effect of torrefaction on enzymatic hydrolysis of lignocellulosic biomass for bio-ethanol production. As a pretreatment, the torrefaction of lignocellulosic biomass was conducted in temperature of $250{\sim}350^{\circ}C$ in the absence of oxygen. Tween-80, nonionic surfactant, was tested to enhance saccharification efficiency by coping with hydrophobicity resulted from torrefaction. As a result, the glucose production from enzymatic hydrolysis of biomass pretreated by torrefaction was greater than that obtained from the non-pretreated biomass. Sugar conversion was higher when the biomass was saccharified with addition of tween-80. It was found that torrefaction can be applied as a preptreatment for lignocellulosic biomass and tween-80 is needed to enhance its enzyme saccharification.

Biofuel Utilization and Implications in ASEAN Based on Case Analysis of Developed Countries (선진국 사례분석을 통한 ASEAN 국가의 바이오연료 활용 방안 및 시사점)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.577-596
    • /
    • 2018
  • ASEAN countries consist of vast coastal areas and thousands of islands that are vulnerable to the effects of climate change on sea level rise. It is believed that this will play an important role in reducing greenhouse gas emissions globally in order to minimize the damage suffered by ASEAN countries. To overcome this issue, biofuels have been used to minimize the impact on the environment by replacing fossil fuels and to reduce greenhouse gas emissions. In those cases of United States, Brazil and Europe, where biofuels are highly utilized, research, development and investment in this field have been actively conducted in the past. In ASEAN countries, however, it has not been a long time since the biofuel policies were established. To overcome this problem, we investigated the renewable fuel policy in the United States, Brazil and the European Union. Based on this, we suggested the utilization plan and prospect of biofuel policy in ASEAN countries.

Industrial Biotechnology: Bioconversion of Biomass to Fuel, Chemical Feedstock and Polymers (산업 BT: 생물 자원의 생물 변환에 의한 연료, 화학원료 및 고분자의 생산)

  • Lee, Sun-Gu;Park, Sunghoon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.23-34
    • /
    • 2006
  • The production of various commodity chemicals including fine chemicals, pharmaceuticals, bulk chemicals, plastics, and fuels is based on fossil resources such as petroleum. However, the limited reserves and ever-increasing demand of petroleum lead to the rapid elevation of its price. In addition, the traditional chemical processes using petroleum as a raw material have been imposing a serious environmental burden to our planet including global warming. These problems can be alleviated substantially by employing biological raw materials and bioconversion processes. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role in bringing about so-called 'bio-based society'.

Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass (목질계 바이오매스 전처리 공정에서 발생하는 리그닌 부산물 활용 기술 개발 동향)

  • Jung, Jae Yeong;Lee, Yumi;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • Due to the high price volatility and environmental concern of petroleum, biofuels such as bioethanol produced from lignocellulosic biomass have attracted much attention. It is also expected that the amount of lignin residue generated from pretreatment of lignocellulosic biomass will increase as the volume of cellulosic bioethanol increases. Lignin is a natural aromatic polymer and has very complex chemical structures with chemical functional groups. Chemical modification of lignin such as oxypropylation and epoxidation has also been applied to the production of value-added bioplastics such as polyurethane and polyester with enhanced thermal and mechanical properties. In addition, lignin can be used for carbon fiber production in automobile industries. This review highlights recent progresses in utilizations and chemical modifications of lignin for the production of bioplastics, resins, and carbon fiber.

Production of Rice Straw Based Cellulosic Ethanol Using Acidic Saccharification (산당화과정을 이용한 볏짚으로부터 셀룰로스 에탄올의 제조)

  • Lee, Seung-Bum;Jung, Soo-Kyung;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.349-352
    • /
    • 2010
  • The production process of cellulosic ethanol from rice straw using acidic saccharification was studied in this experimental work. The hydration by ultrasonic energy and the acidic saccharification using 10~30 wt% of $H_2SO_4$ were performed as pretreatment processes. Also, 10~50 wt% of yeast for 3~6 days was used for fermentation process. The yield of cellulosic ethanol was decided in the fermentation process. The optimum pretreatment condition was 375W of ultrasonic power and 30 min of hydration time using 20 wt% of $H_2SO_4$ and 2 h of the acidic saccharification time. Finally, the optimum fermentation condition was at the condition of 30 wt% of yeast and 3 days of fermentation time.

The Analysis of Whitening Effects on Extracts from Ginkgo (Ginkgo biloba L.) Seeds (은행나무 종자 추출물의 미백효능 분석)

  • Choi, Eun-Young;Jang, Young-Ah
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1229-1240
    • /
    • 2021
  • Ginkgo (Ginkgo biloba L.) seeds, called 'Baekqwa', were extracted from 70% ethanol to investigate the whitening effect and to confirm the application potential as a cosmetic material. Ginkgo seed ethanol extracts (GBE) were treated with B16F10 melanoma cells, and melanin contents and tyrosinase, which is the main enzyme concerning the synthesis process of melanin, inhibitory activity were confirmed. As a result, there were inhibited in a concentration-dependent manner, and GBE also significantly reduced the protein expression and mRNA levels of tyrosinase, tyrosinase-related protein-1, -2 (TRP-1, -2), and their upstream transcription factor, microphthalmia-associated transcription factor (MITF). These results suggest that GBE could be used as an effective whitening agent that has an inhibitory effect on melanin production by regulating the expression and degradation of MITF in melanocytes.

Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation (에탄올 생산 향상을 위한 발효저해물질 제거와 리그닌 유래 발효저해물질이 에탄올 발효에 미치는 영향)

  • Um, Min;Shin, Gyeong-Jin;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2016
  • In this study, ethanol was produced from a biomass hydrolysate that had been treated by electrodialysis (ED) and Amberlite XAD resin to remove fermentation inhibitors. Most of the acetic acid (95.6%) was removed during the ED process. Non-ionizable compounds such as total phenolic compounds, 5-hydroxymethyl furfural, and furfural were effectively removed by the XAD resin treatment. Ethanol production was improved when the ED-treated hydrolysate was treated with XAD-4 resin for a short reaction time. The highest ethanol production from ED-treated hydrolysate was $6.16g/{\ell}$ (after 72 h of fermentation) when the treatment with XAD-4 resin was for 5 min. Among the lignin-derived fermentation inhibitors tested, syringaldehyde in low concentrations (1 and 2 mM) in the hydrolysate increased ethanol production, whereas a high concentration (5 mM) inhibited the ethanol production process. A synthetic medium containing syringaldehyde and ferulic acid was prepared to investigate the synergistic effect of inhibitors on ethanol fermentation. Ethanol production decreased in the mixture of 1 mM syringaldehyde and 1 mM ferulic acid, implying that the effect of ferulic acid on ethanol fermentation is comparable to that of syringaldehyde.