Industrial Biotechnology: Bioconversion of Biomass to Fuel, Chemical Feedstock and Polymers

산업 BT: 생물 자원의 생물 변환에 의한 연료, 화학원료 및 고분자의 생산

  • Lee, Sun-Gu (Department of Chemical and Biochemical Engineering and Institute of Environmental Technology and Industry, Pusan National University) ;
  • Park, Sunghoon (Department of Chemical and Biochemical Engineering and Institute of Environmental Technology and Industry, Pusan National University)
  • 이선구 (부산대학교 화학생명공학과, 환경기술.산업개발연구소) ;
  • 박성훈 (부산대학교 화학생명공학과, 환경기술.산업개발연구소)
  • Received : 2005.12.22
  • Accepted : 2006.02.01
  • Published : 2006.02.28

Abstract

The production of various commodity chemicals including fine chemicals, pharmaceuticals, bulk chemicals, plastics, and fuels is based on fossil resources such as petroleum. However, the limited reserves and ever-increasing demand of petroleum lead to the rapid elevation of its price. In addition, the traditional chemical processes using petroleum as a raw material have been imposing a serious environmental burden to our planet including global warming. These problems can be alleviated substantially by employing biological raw materials and bioconversion processes. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role in bringing about so-called 'bio-based society'.

우리 인류가 이룩한 산업의 발전은 화석원료에 기반을 두고 있다. 현재 인류가 사용하고 있는 대부분의 정밀 화학제품, 의약품, 각종 화학 소재, 플라스틱, 연료 등은 화석원료 특히 석유를 원료로 생산되고 있다. 그러나 석유는 수요의 지속적 증가와 매장량의 한계 때문에 최근 그 가격이 급격히 상승하고 있으며 이로 인해 세계 경제의 발전이 크게 위협받고 있다. 또한, 화석연료나 화석원료 이용하는 화학제품의 제조공정은 지구온난화 가스 및 폐기물을 대량생산하여 인류에게 심각한 환경문제를 야기하고 있다. 이에 바이오매스를 원료로 사용하는 새로운 생물화학공정, 즉 산업 BT의 필요성이 대두되었다. 산업 BT는 바이오 에탄올, 바이오 수소 등의 대체 연료, 글리세롤, 젖산, 아세톤, 부탄올, 프로피온산 및 각종 아미노산 등을 포함한 대체원료, 미생물이 생산하는 PHA 등의 바이오폴리머의 생산에 활용될 수 있으며, 궁극적으로 기존 화석원료 기반의 산업구조를 환경친화형 바이오 기반 구조로 대체할 것으로 기대되고 있다.

Keywords

Acknowledgement

Supported by : 해양수산부

References

  1. Willke, T. and Vorlop, K. D., 'Industrial Bioconversion of Renewable Resources as an Alternative to Conventional Chemistry,' Appl Microbiol Biotechnol., 66, 131-142(2004) https://doi.org/10.1007/s00253-004-1733-0
  2. Aristidou, A. and Penttila, M., 'Metabolic Engineering Applications to Renewable Resource Utilization,' Curr. Opin. Biotechnol., 11, 187-198(2000) https://doi.org/10.1016/S0958-1669(00)00085-9
  3. Wilke, D., 'Chemicals from Biotechnology: Molecular Plant Genetics will Challenge the Chemical and the Fermentation Industry,' Appl Microbiol Biotechnol., 52, 135-145(1999) https://doi.org/10.1007/s002530051500
  4. Schmid, A., Hollmann, F., Park, J. B. and Buhler, B., 'The Use of Enzymes in the Chemical Industry in Europe,' Curr. Opin. Biotechnol., 13, 359-366(2002) https://doi.org/10.1016/S0958-1669(02)00336-1
  5. Thomas, S. M., DiCosimo, R. and Nagarajan, V., 'Biocatalysis: Applications and Potentials for the Chemical Industry,' Trends Biotechnol., 20, 238-242(2002) https://doi.org/10.1016/S0167-7799(02)01935-2
  6. Lorenz, P. and Zinke, H., 'White Biotechnology: Differences in US and EU Approaches?,' Trends Biotechnol., 23, 570-574(2005) https://doi.org/10.1016/j.tibtech.2005.10.003
  7. Miller, J. A. and Jr, Nagarajan, V., 'The Impact of Biotechnology on the Chemical Industry in the 21st Century,' Trends Biotechnol., 18, 190-191(2000) https://doi.org/10.1016/S0167-7799(00)01431-1
  8. Ministry of Commerce, Industry and Energy, 'Industrial Biotechnology: Current Status and National Policy for its Promotion,' (2005)
  9. Ingram, L. O., Gomez, P. F., Lai, X., Moniruzzaman, M., Wood, B. E., Yomano, L. P. and York, S. W., 'Metabolic Engineering of Bacteria for Ethanol Production,' Biotechnol. Bioeng., 58, 204- 214(1998) https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C
  10. Robinson, C., 'The Genetics of Industrial Microorganisms: the First Half Century,' Trends Biotechnol., 17, 178-181(1999) https://doi.org/10.1016/S0167-7799(98)01285-2
  11. Willem, M. de Vos, Hugenholtz, J., 'Engineering Metabolic Highways in Lactococci and Other Lactic Acid Bacteria,' Trends Biotechnol., 22, 72-79(2004) https://doi.org/10.1016/j.tibtech.2003.11.011
  12. Palsson, B. O., 'In silico Biotechnology. Era of Reconstruction and Interrogation,' Curr. Opin. Biotechnol., 15, 50-51(2004) https://doi.org/10.1016/j.copbio.2004.01.006
  13. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. and Cardayre, S. B., 'Genome Shuffling Leads to Rapid Phenotypic Improvement in Bacteria,' Nature, 415, 644-646(2002) https://doi.org/10.1038/415644a
  14. Bae, K. H. and Kim, J. S., 'Human Zinc Fingers as Building Blocks in the Construction of Artificial Transcription Factors,' Nat. Biotechnol., 21, 275-280(2003) https://doi.org/10.1038/nbt796
  15. Park, S. J., Lee, S. Y., Cho, J., Kim, T. Y., Lee, J. W., Park, J. H. and Han, M.-J., 'Global Physiological Understanding and Metabolic Engineering of Microorganisms Based on Omics Studies,' Appl. Microbiol. Biotechnol., 68, 567-579(2005) https://doi.org/10.1007/s00253-005-0081-z
  16. Lee, S. Y., Lee, D.-Y. and Kim, T. Y., 'Systems Biotechnology for Strain Improvement,' Trends Biotechnol., 23, 349-358(2005) https://doi.org/10.1016/j.tibtech.2005.05.003
  17. Hong, S. H., Kim, J. S., Lee, S. Y., In, Y. H., Choi, S. S., Rih, J. K., Kim, C. H., Jeong, H., Hur, C. G. and Kim, J. J., 'The Genome Sequence of the Capnophilic Rumen Bacterium Mannheimia succiniciproducens,' Nat. Biotechnol., 22, 1275-1281(2004) https://doi.org/10.1038/nbt1010
  18. Ezeji, T. C., Qureshi, N. and Blaschek, H. P., 'Acetone Butanol Ethanol (ABE) Production from Concentrated Substrate: Reduction in Substrate Inhibition by Fed-batch Technique and pRoduct Inhibition by Gas Stripping,' Appl. Microbiol. Biotechnol., 63, 653-658(2004) https://doi.org/10.1007/s00253-003-1400-x
  19. Lawford, H. G. and Rousseau, J. D., 'Cellulosic Fuel Ethanol: Alternative Fermentation Process Designs with Wild-type and Recombinant Zymomonas mobilis,' Appl. Biochem. Biotechnol., 105-108, 457-469(2003)
  20. Zaldivar, J., Nielsen, J. and Olsson, L., 'Fuel Ethanol Production From Lignocellulose: a Challenge for Metabolic Engineering and Process Integration,' Appl. Microbiol. Biotechnol., 56, 17- 34(2001) https://doi.org/10.1007/s002530100624
  21. Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K. and Ishizaki, A., 'Biodiesel Production from Crude Palm oil and Evaluation of Butanol Extraction and Fuel Properties,' Process Biochem., 37, 65-71(2001) https://doi.org/10.1016/S0032-9592(01)00178-9
  22. Fukuda, H., Kondo, A. and Noda, H., 'Biodiesel Fuel Production by Transesterification of Oils,' J. Biosci. Bioeng., 92, 405-416 (2001) https://doi.org/10.1263/jbb.92.405
  23. Zvosec, R., '3-Hydroxypropionic acid-a new Intermediate Platform,' http://www.nrel.gov/biotech_symposium/docs/abst5-03. doc(2003)
  24. Cargill, 'Cargill and Codexis Launch Research Collaboration to Develop Industrial Bioproducts Platform,' Press release, http:// www.cargill.com/today/releases/2003/03_05_19codexis.htm(2003)
  25. Zeikus, J. G., Jain, M. K. and Elankovan, P., 'Biotechnology of Succinic Acid Production and Markets for Derived Industrial Products,' Appl. Microbiol. Biotechnol., 51, 545-552(1999) https://doi.org/10.1007/s002530051431
  26. Wee, Y. J., Yun, J. S., Kang, K. H. and Ryu, H. W., 'Continuous Production of Succinic Acid by a Fumarate-reducing Bacterium Immobilized in a Hollow-fiber Bioreactor,' Appl. Biochem. Biotechnol., 98, 1093-1104(2002) https://doi.org/10.1385/ABAB:98-100:1-9:1093
  27. Lee, S. Y. and Hong, S. H., 'Engineering of Escherichia coli Central Metabolic Pathways for the Production of Succinic Acid,' Biol. Syst. Eng., 830, 30-38(2002) https://doi.org/10.1021/bk-2002-0830.ch003
  28. Willke, T., Welter, K. and Vorlop, K. D., 'Biotechnological Production of Itaconic Acid From Sugar,' Zuckerindustrie, 126, 444- 447(2001)
  29. Willke, T. and Vorlop, K. D., 'Biotechnological Production of Itaconic Acid,' Appl. Microbiol. Biotechnol., 56, 289-295(2001) https://doi.org/10.1007/s002530100685
  30. Lee, S. Y., Hong, S. H., Lee, S. H. and Park, S. J., 'Fermentative Production of Chemicals That Can Be Used for Polymer Synthesis,' Macromol. Biosci., 4, 157-164(2004) https://doi.org/10.1002/mabi.200300096
  31. Lee, S. Y., Wong, H. H., Choi, J., Lee, S. H., Lee, S. C. and Han, C. S., 'Production of Medium-chain-length Polyhydroxyalkanoates by High Cell Density Cultivation of Peudomonas putida Under Phosphorus Limitation,' Biotechnol. Bioeng., 68, 466-470(2000) https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
  32. Park, S. J., Choi, J.-I. and Lee, S. Y., 'Engineering of Escherichia coli Fatty Acid Metabolism for the Production of Polyhydroxyalkanoates,' Enzyme Microb. Technol., 36, 579-588(2005) https://doi.org/10.1016/j.enzmictec.2004.12.005
  33. Duda, A. and Penczek, S., 'Polylactide [poly(lactic acid)]: Synthesis, Properties and Applications,' Polymer, 48, 16-27(2003)