Browse > Article
http://dx.doi.org/10.5658/WOOD.2016.44.3.389

Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation  

Um, Min (Department of Forest Products and Technology, Chonnam National University)
Shin, Gyeong-Jin (Department of Forest Products and Technology, Chonnam National University)
Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.44, no.3, 2016 , pp. 389-397 More about this Journal
Abstract
In this study, ethanol was produced from a biomass hydrolysate that had been treated by electrodialysis (ED) and Amberlite XAD resin to remove fermentation inhibitors. Most of the acetic acid (95.6%) was removed during the ED process. Non-ionizable compounds such as total phenolic compounds, 5-hydroxymethyl furfural, and furfural were effectively removed by the XAD resin treatment. Ethanol production was improved when the ED-treated hydrolysate was treated with XAD-4 resin for a short reaction time. The highest ethanol production from ED-treated hydrolysate was $6.16g/{\ell}$ (after 72 h of fermentation) when the treatment with XAD-4 resin was for 5 min. Among the lignin-derived fermentation inhibitors tested, syringaldehyde in low concentrations (1 and 2 mM) in the hydrolysate increased ethanol production, whereas a high concentration (5 mM) inhibited the ethanol production process. A synthetic medium containing syringaldehyde and ferulic acid was prepared to investigate the synergistic effect of inhibitors on ethanol fermentation. Ethanol production decreased in the mixture of 1 mM syringaldehyde and 1 mM ferulic acid, implying that the effect of ferulic acid on ethanol fermentation is comparable to that of syringaldehyde.
Keywords
ethanol; electrodialysis; XAD resin; fermentation inhibitors;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Aimin, L., Quanxing, Z., Jinlong, C., Zhenghao, F., Chao, L., Wanxing, L. 2001. Adsorption of phenolic compounds on Amberlite XAD-4 and its acetylated derivative MX-4. Reactive and Functional Polymers 49: 225-233.   DOI
2 Imai, A., Fukushima, T., Matsushige, K., Kim, Y.H., Choi, K. 2002. Characterization of dissolved organic matter in effluents from waste water treatment plants. Water Research 36: 859-870.   DOI
3 Jeong, S.Y., Trinh, L.T.P., Lee, H.J., Lee, J.W. 2014. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresource Technology 152: 444-449.   DOI
4 Jia, C., Li, X., Liu, Z., Xu, B., Yao, S., Song, H. 2015. Adsorption process and mechanism for furfural separation with macroporous resin. Desalination and Water Treatment 56(8): 2214-2224.   DOI
5 Kim, H.Y., Lee, J.W., Thomas, W. J., Choi, I.G. 2011. Evaluation of oxalic acid pretreatment condition using response surface method for producing bio-ethanol from yellow poplar (Liriodendron tulipifera) by simultaneous saccharification and fermentation, Journal of Korean Wood Science and Technology 39(1): 75-85.   DOI
6 Klinke, H.B., Olsson, L., Thomsen, A.B., Ahring, B.K. 2003. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast. Biotechnology and Bioengineering 81(6): 738-747.   DOI
7 Kundu, C. 2015. Enhanced bioethanol production from oxalic acid pretreated hydrolysate of lignocellulosic biomass by combined detoxification process. Master's Thesis, Chonnam National University, Korea.
8 Lee, M.G., Cho, D.H., Kim, Y.H., Lee, J.W., Lee, J.H., Kim, S.W., Cho, J.H., Kim, S.G., Park, C.H. 2009. Evaluation of biological and physico-chemical detoxification methods for the removal of inhibitors in lignocellulose hydrolysate. Korean Society for Biotechnology and Bioengineering 24(5): 439-445.
9 Li, C., Xu, M., Sun, X., Han, S., Wu, X., Liu, Y.N., Huan, J., Deng, S. 2013. Chemical modification of Amberlite XAD-4 by carbonyl groups for phenol adsorption from wastewater. Chemical Engineering Journal 229: 20-26.   DOI
10 Lim, W.S., Lee, J.W. 2012. Enzymatic hydrolysis condition of pretreated corncob by oxalic acid to improve ethanol production. Journal of Korean Wood Science and Technology 40(4): 294-301.   DOI
11 Mulder, M. 1996. Basic principles of membrane technology. Kulwer Academic Publishers.
12 Pu, Y., Hu, F., Huang, F., Davison, B.H. Ragauskas, A.J. 2013. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels 6:15.   DOI
13 Seo, Y.J., Lim, W.S., Lee, J.W. 2011. Optimal condition for simultaneous saccharification and fermentation using pretreated corncob by oxalic acid, Journal of Korean Wood Science and Technology 39(6): 490-497.   DOI
14 Shin, G.J., Jeong, S.Y., Lee, H.J., Lee, J.W. 2015. Furfural production and recovery by two-stage acid treatment of lignocellulosic biomass. Journal of Korean Wood Science and Technology 43(1): 76-85.   DOI
15 Sim, S.W. 2012, Economical efficiency analysis of bioethanol for transportation, Master's Thesis, Korea University, Korea.
16 Szczodrak, J., Fiedurek, J. 1996. Technology for conversion of lignocellulosic biomass to ethanol. Biomass and Bioenergy 10(5-6): 367-375.   DOI
17 Vargas-Hernandeza, D., Rubio-Caballerob, J.M., Santamaria-Gonzalezb, J., Perez-Cruza, R., Jimenez-Lopezb, M.A., Hernandez-Huescaa, R., Maireles-Torresb., P. 2014. Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. Journal of Molecular Catalysis A: Chemical 383-384: 106-113.   DOI
18 Weil, J.R., Dien, B., Bothast, R., Hendrickson, R., Mosier, N.S., Ladisch, M. R., 2002. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Industrial and Engineering Chemistry Research 41: 6132-6138.   DOI
19 Viia, L. 1999. Comparison of XAD resins for the isolation of humic substances from seawater. Journal of Chromatography A 845: 1-2.   DOI