• Title/Summary/Keyword: 바이오폴리우레탄

Search Result 31, Processing Time 0.025 seconds

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Synthesis and Properties of Eco-friendly Waterborne Polyurethane according to Bio-polyol Contents (바이오폴리올 함량에 따른 친환경 수분산 폴리우레탄의 합성 및 특성)

  • Chang, Yoon Hee;Jeong, Boo-Young;Cheon, JungMi;Chun, Jae Hwan;Huh, PilHo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • In this study, we report on the synthesis and properties of eco-friendly waterborne polyurethane (WPU) according to bio-polyol contents. It was successfully synthesized by the different polyester polyol (DT-1040) and castor oil based polyol (COP) ratios. The glass transition temperature (Tg) of the synthesized bio polyol based waterborne polyurethane was around -70 ℃ and -30 ℃, and it was confirmed that the Tg range was widened as the COP content increased. In addition, as the COP content increased, the tensile strength decreased, and optimum adhesive strength showed when DT-1040:COP ratio was 7:3.

Biological Hydrogen Production from Mixed Waste in a Polyurethane Foam-sequencing Batch Reactor (혼합폐기물 및 폴리우레탄 담체를 충전한 연속회분식공정을 이용한 생물학적 수소생산)

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • This study investigated the effects of polyurethane foam on continuous hydrogen production from mixed wastes. Molasses was co-fermented with non-pretreated sewage sludge in a sequencing batch reactor. The results indicated that the addition of polyurethane foams as a microbial carrier in the reactor mitigated biomass loss at HRT 12 h, while most of the biomass was washed out during the operation period with no carrier. There was a stable hydrogen production rate of $0.4L-H_2/l/d$ in the carrier-sequencing batch reactor. Suspended biomass in the carrier-reactor indicated it possessed the highest specific hydrogen production rate ($241{\pm}4ml-H_2/g\;VSS/d$) when compared to that of biomass on the surface ($133{\pm}10ml-H_2/g\;VSS/d$) or inner carrier ($95{\pm}14ml-H_2/g\;VSS/d$).

Property Comparison of Bio-Polyurethane and Petroleum based Polyurethane (바이오 폴리우레탄과 석유기반 폴리우레탄의 물성 비교)

  • Lee, Dam Hee;Lee, Kwan Hee;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.47-52
    • /
    • 2018
  • The three polyols, poly(trimethylene ether) glycol 2000, poly(tetramethylene ether) glycol 2000 and poly (tetramethylene ether) glycol 1000 were reacted with 4,4-diphenylmethane diisocyanate to get polyurethanes. The synthesized three polyurethanes were measured by FT-IR, NMR for investigating chemical structures. Through two spectroscophical methods, It is found that urethane group exists in the three polymers. From the evaluation of hardness, glass transition temperature, tensile strength, and water resistance, the results showed increasing order of Poly(tetramethylene ether) glycol 1000 > Poly(trimethylene ether) glycol 2000 > Poly(tetramethylene ether) glycol 2000 with the content of hard segment in polyurethane.

Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass (목질계 바이오매스 전처리 공정에서 발생하는 리그닌 부산물 활용 기술 개발 동향)

  • Jung, Jae Yeong;Lee, Yumi;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • Due to the high price volatility and environmental concern of petroleum, biofuels such as bioethanol produced from lignocellulosic biomass have attracted much attention. It is also expected that the amount of lignin residue generated from pretreatment of lignocellulosic biomass will increase as the volume of cellulosic bioethanol increases. Lignin is a natural aromatic polymer and has very complex chemical structures with chemical functional groups. Chemical modification of lignin such as oxypropylation and epoxidation has also been applied to the production of value-added bioplastics such as polyurethane and polyester with enhanced thermal and mechanical properties. In addition, lignin can be used for carbon fiber production in automobile industries. This review highlights recent progresses in utilizations and chemical modifications of lignin for the production of bioplastics, resins, and carbon fiber.

Pilot-Scale Biofilter Treatment of Hazardous Air Pollutants (파이로트-규모 바이오필터의 유해성 대기오염물질 처리)

  • Son Hyun-Keun
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.219-228
    • /
    • 2006
  • 폴리우레탄, 폴리에스테르, 바이페놀, PVC 외 각종 농약 등을 생산하는 울산의 모 화학공장에서, 다양한 종류의 휘발성유기화합물질들(VOCs)이 배출되고 있다. 평균적인 휘발성유기화합물질의 배출 농도는 7283 ppm으로, 톨루엔, 페놀을 포함하여 Trimethyl-pentene, trimethyl-hexene, dimethyl-cyclohexane 등이 검출되었다. Trimethyl-pentene, trimethyl-hexene, dimethyl-cyclohexane등은 인화성이 강하며 화재를 일으킬 위험성이 매우 큰 것으로 알려져 있고, 특히 톨루엔과 페놀의 경우는 호흡이나 피부접촉 등을 통한 인체로의 유입이 있을 경우 유독성을 나타내게 된다. 이러한 VOCs제거를 위하여 겨울철 기간에 파이로트-규모의 바이오필터 적용 실험이 진행되어 졌다. 본 연구의 목적은 바이오필터 운영이 진행되는 가운데 온도, 함수비, 하중, 압력손실 등의 제한요소들이 미디어 내부에서 변화하는 상황에 대한 관찰 및 평가에 있다. 이러한 제한요소들은 바이오필터의 디자인과 오염물질 제거에 심대한 영향을 미치게 된다. 바이오필터는 옥외에 설치되어 총 44일간 운영되어 졌는데, 외부 영하온도의 영향을 최소화하기 위하여, 7cm두께의 파이버-글래스 소재 단열설비가 반응기 외부에 설치되었고 또한 $150^{\circ}C$의 스팀이 바이오필터 반응기와 단열설비 사이에 제공되어 졌다. 바이오필터 반응기 내부에는 23개의 온도 측정 센서와 함수비 센서, 공기샘플포트, 습도계 등이 각기 다른 장소에 설치되어 온도, 함수비 등의 제한요소 영향연구가 진행되었다. 미디어 내부 같은 높이의 서로 반대되는 위치에서 온도차가 13.7도에서 -8.3도까지 차이가 나는 것으로 관찰되었으며, 미디어 높이 위치의 변화에 따라서도 21도에서 2도가지 차이를 나타냈다. 바이오필터 함수비는 실험기간 동안 지속적으로 변화가 발생하였는데, 스팀이 제공되는 동안에는 미디어 함수비가 훨씬 빠른 속도로 증가됨이 관찰되어 졌다.

화산석/폴리우레탄 복합 담체를 충전한 바이오필터에서 Ethyl Acetate의 제거특성

  • 임진관;김중균;이택관;감상규;이민규
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.168-171
    • /
    • 2003
  • 화산석/polyurethane 복합담체를 충전한 biofilter에서 ethyl acetate의 제거특성에 관한 연구결과는 다음과 같다. 공탑접촉시간(EBCT)을 30 sec로 운전시에는 ethyl acetate의 유입농도가 300 ppmv 이하에서는 100%의 제거효율을 나타내었다. 유입부하량에 따른 제거용량을 살펴보면 유입부하량이 160 g/m3/hr 이하일때는 유입부햐량과 제거용량과는 직선적인 관계를 보였으며 본 연구에서 ethyl acetate의 최대제거용량은 210 g/m3/hr으로 산정되었다.

  • PDF

Treatment of gas from the vent of a fine chemical plant using a pilot-scale biofilter (파일럿 규모 바이오필터를 이용한 정밀화학공장 배출가스의 처리)

  • Ryu, Hee-Wook;Lee, Tae-Ho;Park, Chang-Ho
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • A pilot-plant biofilter (1750 mm W ${\times}$ 2750 mm L ${\times}$ 2000 mm H) packed with polyurethane foam (20 mm W ${\times}$ 20 mm L ${\times}$ 20 mm H) was installed in an fine chemical plant emitting gas streams containing ethyl alcohol, ethyl acetate, and dichloromethane. The biofilter was successfully operated for 30 days under highly fluctuating incoming concentrations (maximum 3500 ppm) at a residence time of 36 and 60 sec. Both ethyl alcohol and ethyl acetate were removed more than 95%, but dichloromethane removal was less than 50%. Malodor was also removed more than 90% from 17 days after start up.

Synthesis and Characteristics of 2 Step-curable Shape Memory Polyurethane (2단계 경화형 형상기억 폴리우레탄의 합성 및 분석)

  • Noh, Geon Ho;Lee, Seungjae;Bae, Seong-Guk;Jang, Seong-Ho;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1023-1028
    • /
    • 2018
  • Shape memory materials are widely used in high-tech industries. Although shape memory polymers have been developed, they have a disadvantage, only unidirectional resilience. Shape memory polymers with bi-directional recovery resilience have been actively studied. In this study, a bidirectional shape memory polyurethane was synthesized using poly(${\varepsilon}$-caprolactone) diol, methylene dicyclohexyl diisocyanate, and hydroxyethyl acrylate. The first physical curing occurred between hard segments and hydrogen bondings when the solution was dried. The second curing in acrylate groups was performed by UV exposure. A degree of curing was analyzed by infrared spectroscopy. The shape memory properties of 2 step-cured polyurethanes were investigated as a function of UV curing time.

Developing a Dental Unit Waterline Model Using General Laboratory Equipments (실험실 일반 장비를 이용한 치과용 유니트 수관 모델 개발)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.284-292
    • /
    • 2016
  • Water supplied through dental unit waterlines (DUWLs) has been shown to contain high number of bacteria. To reduce the contamination of DUWLs, it is essential to develop effective disinfectants. It is, however, difficulty to obtain proper DUWL samples for studies. The purpose of this study was to establish a simple laboratory model for reproducing DUWL biofilms. The bacteria obtained from DUWLs were cultured in R2A liquid medium for 10 days, and then stored at $-70^{\circ}C$. This stock was inoculated into R2A liquid medium and incubated in batch mode. After 5 days of culturing, it was inoculated into the biofilm formation model developed in this study. Our biofilm formation model comprised of a beaker containing R2A liquid medium and five glass rods attached to DUWL polyurethane tubing. Biofilm was allowed to form on the stir plate and the medium was replaced every 2 days. After 4 days of biofilm formation in the laboratory model, biofilm thickness, morphological characteristics and distribution of the composing bacteria were examined by confocal laser microscopy and scanning electron microscopy. The mean of biofilm accumulation was $4.68{\times}10^4$ colony forming unit/$cm^2$ and its thickness was $10{\sim}14{\mu}m$. In our laboratory model, thick bacterial lumps were observed in some parts of the tubing. To test the suitability of this biofilm model system, the effectiveness of disinfectants such as sodium hypochlorite, hydrogen peroxide, and chlorhexidine, was examined by their application to the biofilm formed in our model. Lower concentrations of disinfectants were less effective in reducing the count of bacteria constituting the biofilm. These results showed that our DUWL biofilm laboratory model was appropriate for comparison of disinfectant effects. Our laboratory model is expected to be useful for various other purposes in further studies.