DOI QR코드

DOI QR Code

Establishment of a Dental Unit Biofilm Model Using Well-Plate

Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립

  • Yoon, Hye Young (Department of Oral Microbiology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Lee, Si Young (Department of Oral Microbiology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University)
  • 윤혜영 (강릉원주대학교 치과대학 구강미생물학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 치과대학 구강미생물학교실 및 구강과학연구소)
  • Received : 2017.04.26
  • Accepted : 2017.06.13
  • Published : 2017.08.31

Abstract

The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

DUWL에 형성한 바이오필름을 효율적으로 제거할 수 있는 새로운 소독제는 개발되어야 하며, 실험실에서 소독제의 효과를 확인하기 위해 DUWL 바이오필름 시료는 필요하다. 이 연구의 목적은 well plate를 사용하여 간단하고 재현 가능한 DUWL 바이오필름 모델을 개발하는 것이다. 사용중인 4대의 DUWL에서 배출된 1 L의 물을 여과지에 여과시켜 세균을 얻었다. 여과지를 PBS (pH 7.4) 용액 20 ml에 현탁시킨 후, 현탁액을 R2A 액체배지에 접종하고 $25^{\circ}C$에서 10일 동안 배양하였다. 10일 배양한 세균 배양액을 $-70^{\circ}C$에 보관하였고 매 실험에 사용하였다. 세균배양액을 R2A 배지에서 5일 동안 회분 배양하였다. 12-well plate에 회분 배양한 세균 배양액과 멸균한 폴리우레탄 튜빙 조각을 넣고 정체된 상태로 $25^{\circ}C$에서 바이오필름을 형성시켰다. R2A 액체배지는 2일마다 2 ml씩 교체해주었다. 폴리우레탄 내형성된 바이오필름의 축적량을 확인하기 위해 폴리우레탄 튜빙 조각을 내면에서 수집한 바이오필름을 R2A 고체배지에 도말하였다. 도말한 R2A 고체배지는 $25^{\circ}C$에서 7일 배양하고 $CFU/cm^2$를 계산하였다. 그리고 바이오필름의 두께와 구성 세균의 형태 및 분포를 확인하기 위해 CLSM과 SEM을 사용하였다. 4일 동안 배양시킨 바이오필름의 평균 축적량은 $1.15{\times}10^7CFU/cm^2$였다. 바이오필름은 구균, 짧은 길이의 간균, 그리고 중간길이의 간균을 포함하고 있었고 폴리우레탄 튜빙 내면에 넓게 분포하고 있었다. 바이오필름두께는 위치에 따라 차이가 있지만 $2{\mu}m{\sim}7{\mu}m$였다. 이 연구에서 제작된 DUWL 바이오필름 model은 DUWL에서 수집된 모든 세균을 사용하여 세균의 다양성을 확보했고 또한 실험실에서 쉽게 구할 수 있는 well-plate를 사용했기 때문에 비용 효율적이고 재현이 간단하다. 본 연구의 DUWL 바이오필름 모델은 새로운 소독방법의 개발하는 데 유용하게 사용될 수 있다.

Keywords

References

  1. Barbeau J, Tanguay R, Faucher E, et al.: Multiparametric analysis of waterline contamination in dental units. Appl Environ Microbiol 62: 3954-3959, 1996.
  2. Walker JT, Bradshaw DJ, Bennett AM, Fulford MR, Martin MV, Marsh PD: Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl Environ Microbiol 66: 3363-3367, 2000. https://doi.org/10.1128/AEM.66.8.3363-3367.2000
  3. Yoon HY, Lee SY: Bacterial contamination of dental unit water systems in a student clinical simulation laboratory of college of dentistry. J Dent Hyg Sci 15: 232-237, 2015. https://doi.org/10.17135/jdhs.2015.15.2.232
  4. O'Donnell MJ, Boyle MA, Russell RJ, Coleman DC: Management of dental unit waterline biofilms in the 21st century. Future Microbiol 6: 1209-1226, 2011. https://doi.org/10.2217/fmb.11.104
  5. Schel AJ, Marsh PD, Bradshaw DJ, et al.: Comparison of the efficacies of disinfectants to control microbial contamination in dental unit water systems in general dental practices across the European Union. Appl Environ Microbiol 72: 1380-1387, 2006. https://doi.org/10.1128/AEM.72.2.1380-1387.2006
  6. Karpay RI, Plamondon TJ, Mills SE, Dove SB: Combining periodic and continuous sodium hypochlorite treatment to control biofilms in dental unit water systems. J Am Dent Assoc 130: 957-965, 1999. https://doi.org/10.14219/jada.archive.1999.0336
  7. Lin SM, Svoboda KK, Giletto A, Seibert J, Puttaiah R: Effects of hydrogen peroxide on dental unit biofilms and treatment water contamination. Eur J Dent 5: 47-59, 2011.
  8. Costa D, Girardot M, Bertaux J, Verdon J, Imbert C: Efficacy of dental unit waterlines disinfectants on a polymicrobial biofilm. Water Res 91: 38-44, 2016. https://doi.org/10.1016/j.watres.2015.12.053
  9. Walker JT, Bradshaw DJ, Fulford MR, Marsh PD: Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl Environ Microbiol 69: 3327-3332, 2003. https://doi.org/10.1128/AEM.69.6.3327-3332.2003
  10. Yoon HY, Lee SY: Developing a dental unit waterline model using general laboratory equipments. J Dent Hyg Sci 16: 284-292, 2016. https://doi.org/10.17135/jdhs.2016.16.4.284
  11. Christensen GD, Simpson WA, Younger JJ, et al.: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 996-1006, 1985.
  12. Walker C, Sedlacek MJ: An in vitro biofilm model of subgingival plaque. Oral Microbiol Immunol 22: 152-161, 2007. https://doi.org/10.1111/j.1399-302X.2007.00336.x
  13. Sanchez MC, Llama-Palacios A, Blanc V, Leon R, Herrera D, Sanz M: Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. J Periodontal Res 46: 252-260, 2011. https://doi.org/10.1111/j.1600-0765.2010.01341.x
  14. Cobb CM, Martel CR, McKnight SA 3rd, Pasley-Mowry C, Ferguson BL, Williams K: How does time-dependent dental unit waterline flushing affect planktonic bacteria levels? J Dent Educ 66: 549-555, 2002.
  15. Yabune T, Imazato S, Ebisu S: Inhibitory effect of PVDF tubes on biofilm formation in dental unit waterlines. Dent Mater 21: 780-786, 2005. https://doi.org/10.1016/j.dental.2005.01.016
  16. Uzel A, Cogulu D, Oncag O: Microbiological evaluation and antibiotic susceptibility of dental unit water systems in general dental practice. Int J Dent Hyg 6: 43-47, 2008. https://doi.org/10.1111/j.1601-5037.2007.00269.x
  17. Yabune T, Imazato S, Ebisu S: Assessment of inhibitory effects of fluoride-coated tubes on biofilm formation by using the in vitro dental unit waterline biofilm model. Appl Environ Microbiol 74: 5958-5964, 2008. https://doi.org/10.1128/AEM.00610-08
  18. Reasoner DJ: Heterotrophic plate count methodology in the United States. Int J Food Microbiol 92: 307-315, 2004. https://doi.org/10.1016/j.ijfoodmicro.2003.08.008
  19. Bartoloni JA, Porteous NB, Zarzabal LA: Measuring the validity of two in-office water test kits. J Am Dent Assoc 137: 363-371, 2006. https://doi.org/10.14219/jada.archive.2006.0186
  20. Porteous N, Sun Y, Dang S, Schoolfield J: A comparison of 2 laboratory methods to test dental unit waterline water quality. Diagn Microbiol Infect Dis 77: 206-208, 2013. https://doi.org/10.1016/j.diagmicrobio.2013.07.010
  21. Walker JT, Marsh PD: Microbial biofilm formation in DUWS and their control using disinfectants. J Dent 35: 721-730, 2007. https://doi.org/10.1016/j.jdent.2007.07.005
  22. Simoes LC, Simoes M, Vieira MJ: Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection. Appl Environ Microbiol 76: 6673-6679, 2010. https://doi.org/10.1128/AEM.00872-10

Cited by

  1. 치과용 유니트 수관에서 분리한 세균의 부착 및 바이오필름 형성 능력 vol.18, pp.2, 2017, https://doi.org/10.17135/jdhs.2018.18.2.69