• Title/Summary/Keyword: 바이오제닉 아민

Search Result 24, Processing Time 0.036 seconds

Inhibition of Biogenic Amine Production by Bacillus sp. BCNU 9171 Isolated from Doenjang (된장에서 분리한 Bacillus sp. BCNU 9171에 의한 바이오제닉 아민 생산 저해)

  • Park, Yeo Jin;Joo, Woo Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.299-304
    • /
    • 2017
  • Biogenic amines such as histamine, tyramine, cadaverine, and putrescine may have detrimental effects on consumers' health; therefore, they must be considered hazardous substances in foods. In recent years, the application of microorganisms that can degrade biogenic amines has become an emerging method for reducing the amount of these amines in foods. Primarily, Bacillus sp. BCNU 9171 was isolated from Doenjang, a Korean traditional fermented soybean paste. The inhibitory effects of the cell-free supernatant (CFS) of Bacillus sp. BCNU 9171 on biogenic amine production by 4 amine-positive food pathogenic bacteria were investigated using high performance liquid chromatography (HPLC). Our results showed that 4 different CFS concentrations-10% [1 ml CFS + 9 ml histidine decarboxylase broth (HDB)], 25% (2.5 ml CFS + 7.5 ml HDB), 50% (5 ml CFS + 5 ml HDB), and 75% (7.5 ml CFS + 2.5 ml HDB)-reduced the biogenic amine production up to 87% compared with that of the control without CFS. These results suggested that it is advisable to use Bacillus sp. strain BCNU 9171 as a starter organism for the manufacture of fermented foods and to ensure food safety since it prevents the accumulation of high amounts of biogenic amines in fermented foods by amine-positive bacteria.

Isolation, identification, and probiotic characteristics of Bacillus strains affecting the biogenic amine content in fermented soybean paste (발효 된장의 바이오제닉 아민 함량에 영향을 미치는 바실러스균의 분리 동정 및 프로바이오틱 특성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.131-142
    • /
    • 2019
  • The primary objective of this study was to determine the content of biogenic amines in Korean traditional fermented soybean pastes (doenjang) and to isolate potential probiotic Bacillus sp. with the ability to inhibit biogenic amines accumulation. There were significant differences in the bacterial cell counts, pH value, titratable acidity, salinity, and biogenic amine content between the samples. Among Bacillus strains isolated from doenjang, Bacillus (B.) licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, Bacillus sp. DB209, Bacillus sp. DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, Bacillus sp. DB917, B. cereus DB 915, B. subtilis DB1020, and Bacillus sp. DB1022 were found to be able to produce biogenic amines. On the other hand, biogenic amine-degrading strains were identified as Bacillus sp. DB403, Bacillus sp. DB407, B. subtilis DB517, B. licheniformis DB612, and B. subtilis DB821. In particular, Bacillus sp. DB407 and B. subtilis DB821 showed probiotic properties including tolerance to artificial digestive juices, adherence to intestinal epithelial cells, resistance to antibiotics, and antibacterial activity against biogenic amine-producing strains. In conclusion, the two probiotic Bacillus strains may be considered as the suitable starter for manufacture of fermented soybean foods with low biogenic amines content.

HPLC-based Analysis of Biogenic Amines in Aging-Cheese (HPLC를 이용한 숙성치즈로부터 바이오제닉 아민 분석법 개발)

  • Park, Jong-Hyuk;Lee, Sang-Cheon;Moon, Hye-Jung;Oh, Jeon-Hui;Song, Gi-Bong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.187-191
    • /
    • 2016
  • Biogenic amines have been used as chemical indicators of fermented foods. So far, several chromatography methods have been developed to detect biogenic amines in foods. However, few methods have identified these compound in domestic cheese. We analyzed the biogenic amines (histamine dihydrochloride, tyramine hydrochloride, ${\beta}$-phenylethylamine hydrochloride, putrescine dihydrochloride, cadaverine, spermidine, tryptamine hydrochloride, ethanolamine hydrochloride and butylamine) in cheese by using HPLC. The calibration curves of the biogenic amines were found to be linear over the concentration range of 10-50 ppm with a correlation coefficient of above 0.99. The limit of detection (LOD) and limit of quantitation (LOQ) of the biogenic amines in the given order were 3.7 and 11.3 ppm, 3.4 and 10.4ppm, 3.4 and 10.3 ppm, 4.0 and 12.2 ppm, 3.4 and 10.4 ppm, 3.4 and 10.5 ppm, 3.5 and 10.7 ppm, 4.1 and 12.5 ppm, and 3.4 and 10.4 ppm, respectively. Recovery rates of the biogenic amines in the given order were 112, 104, 93, 108, 91, 102, 101, and 92%, respectively. The findings of this study suggest that HPLC is a suitable method for the determination of biogenic amines, thereby indicating its potential application in the quality control of aging cheese.

Antibacterial activity of lactic acid bacteria against biogenic amine-producing Bacillus spp. isolated from traditional fermented soybean paste (전통 발효 된장으로부터 분리된 바이오제닉 아민 생성 바실러스균에 대한 유산균의 항균 활성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • In the present study, biogenic amine-forming Bacillus spp. and bacteriocin-producing lactic acid bacteria (LAB) isolated from Doenjang were generally identified through 16S rRNA gene sequencing, and the physicochemical and microbiological characteristics of cheonggukjang prepared using the isolated strains were investigated. Biogenic amine-producing bacteria from the samples were identified as Bacillus licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, B. pumilus DB209, B. subtilis DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, B. amylolique-faciens DB915, B. licheniformis DB917, B. cereus DB1019, B. subtilis DB1020, B. megaterium DB1022. The bacteriocin-producing LAB showed antibacterial effect against biogenic amine-producing Bacillus spp. were identified as Lactobacillus plantarum DLA205, L. brevis DLA501, L. fermentum DLA509, L. acidophilus DLA703, and Enterococcus faecalis DLA804. The bacteriocin produced by the LAB significantly decreased the viable numbers and the amine production ability of the biogenic amine-forming Bacillus spp. in a concentration dependent manner. Therefore, the pH, ammonia nitrogen and biogenic amine content of cheonggukjang prepared by mixed culture of the LAB and Bacillus spp. were significantly decreased compared to the control group.

Screening of Non-Biogenic-Amine-Producing Bacillus subtilis and Medium Optimization for Improving Biomass by the Response Surface Methodology (바이오제닉 아민 비생성 Bacillus subtilis의 선별 및 반응표면 분석법에 의한 균체량 증가를 위한 배지 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Choi, Nack-Shick;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.571-583
    • /
    • 2016
  • Biogenic amines are produced primarily by microorganisms found in fermented foods and are often implicated in poisoning incidents in humans. In this study, 620 strains of microorganisms were isolated from traditional Korean fermented food in Sunchang in order to screen for non-biogenicamine-producing microorganisms present in these foods. One strain was identified and named Bacillus subtilis SCJ1, by using 16S rRNA sequencing and biochemical characterization. We investigated the cell growth of this organism in order to understand its potential for industrial application. To this end, we optimized the culture medium constituents by using the response surface methodology. The Plackett-Burman experimental design was used for screening of the medium constituents, such as molasses, yeast extract and peptone, for improving cell growth. In order to determine the optimal concentration of each constituent, we used a central composite design. Consequently, the optimized concentrations of molasses, yeast extract and peptone were predicted to be 27.5 g/l, 7.5 g/l and 17.5 g/l, respectively. By model verification, we confirmed that a 1.49-fold increase in dry cell weight compared to the basal medium-from 1.32 g/l, to 1.9722 g/l-was achieved.

Incubation conditions affecting biogenic amines degradation of probiotic lactic acid bacteria (프로바이오틱 유산균의 바이오제닉 아민 분해능에 영향을 미치는 배양 조건)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.273-285
    • /
    • 2017
  • The purpose of this study was to investigate the inhibitory effect of antibacterial substances produced by probiotic lactic acid bacteria (LAB) against biogenic amines-producing bacteria and the influence of culture conditions on the antibacterial activity of bacteriocin and organic acid. The bacteriocin solutions of Lactobacillus plantarum FIL20 (64 AU/ml) and Lactobacillus paracasei FIL31 (128 AU/ml) showed strong antibacterial activity against Serratia marcescens CIH09 and Aeromonas hydrophilia RIH28, respectively. And the lactic acid contents in the cell-free culture supernatants (CFCS) obtained from FIL20 and FIL31 strains were $107.3{\pm}2.7mM$ and $129.5{\pm}4.6mM$, respectively. Therefore, the bacteriocin solution (200 AU/ml) and the CFCS ($200{\mu}l/ml$) produced by L. plantarum FIL20 and L. paracasei FIL31 significantly (P < 0.05) decreased the bacterial numbers and histamine and tyramine production ability of S. marcescens CIH09 and A. hydrophilia RIH28. The amounts of histamine and tyramine produced by the CIH09 strain under conditions of low initial pH (5.0) and incubation temperature ($15^{\circ}C$) was significantly reduced by treatment with bacteriocin solution and CFCS obtained from L. plantarum FIL20. In addition, the bacterial counts and biogenic amines contents of CIH09 strain were significantly decreased (P < 0.05) when sodium chloride (5%) or potassium nitrite (200 mg/g) were mixed with the antibacterial substances of L. plantarum FIL20. Consequently, the bacteriocin and organic acid solution of L. plantarum FIL20 and L. paracasei FIL31 can be used as a biological preservation to effectively control the production of biogenic amines by the application of hurdle technology.

Effect of biogenic amine forming and degrading bacteria on quality characteristics of Kimchi (바이오제닉 아민 생성균과 분해균이 김치의 품질 특성에 미치는 영향)

  • Lim, Eun-Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • The purpose of this study was to investigate the quality characteristics of kimchi prepared with a single starter culture of biogenic amines (BA)-forming lactic acid bacteria (LAB) or a combined starter cultures composed of BA-forming and BA-degrading LAB. As the fermentation proceeded, the lactic acid bacterial count, titratable acidity, and BA content in kimchi prepared with myeolchi-aekjeot were slightly higher than those of kimchi prepared with saeu-jeot. The amount and type of BA produced by LAB were mostly strain dependent rather than species specific. Among all of the isolated LAB strains, the highest levels of cadaverine, histamine, putrescine and tyramine were produced by Leuconostoc mesenteroides MBK32, Lactobacillus brevis MBK34, Lactobacillus curvatus MBK31 and Enterococcus faecalis SBK31, respectively. BA-forming and BA-degrading starter cultures played an important role in the growth rate and organic acid-producing ability of LAB in kimchi. Interestingly, BA contents in kimchi increased by adding single BA-forming LAB starter were effectively lowered by the mixed cultures with BA-degrading LAB.

Analysis of Microbiological Contamination and Biogenic Amines Content in Traditional and Commercial Doenjang (재래 된장과 시판 된장의 미생물 오염 및 바이오제닉 아민 함량 분석)

  • Lee, Hak-Tae;Kim, Jong-Ho;Lee, Sang-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.1
    • /
    • pp.102-109
    • /
    • 2009
  • This study was carried out to analyse the microbio\logical contamination and biogenic amines(BA) content in Korea traditional soybean paste and commercial soybean paste. The results of microbio\logical analysis through Korean traditional soybean pastes($L1{\sim}L4$) were $7.8{\pm}0.1\;\log\;CFU/g{\sim}7.9{\pm}0.1\;\log\;CFU/g$, commercial soybean pastes($H1{\sim}H6$) were $6.2{\pm}0.1\;\log\;CFU/g{\sim}7.4{\pm}0.1\;\log\;CFU/g$ for APC (Aerobic Plate Count), and $L1{\sim}L4$, H5, H6 soybean pastes were $2.3{\pm}0.4\;\log\;CFU/g{\sim}2.6{\pm}0.1\;\log\;CFU/g$ for Bacillus cereus. But other microorganism was not dectected. Among biogenic amines, PUT(putrescine), TYR(tyramine), HIS(histamine), PHE(2-Phenylethylamine) were dectected high level and CAD(cadaverine), TRY(trypramine), AGM(agmatine) were dectected medium level and SPD(spermidine), SPM(spermine), NOR(noradrenaline), SER(serotonin) were dectected low level. Dectected contents of biogenic amines were higher in commercial soybean paste compared to the traditional soybean paste.

Isolation and Identification of Probiotic Bacillus strain Forming Amine Oxidase from Traditional Fermented Soybean Paste (재래식 된장으로부터 아민 산화 효소를 생산하는 프로바이오틱 바실러스균의 분리 동정)

  • Lim, Eun-Seo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1535-1544
    • /
    • 2020
  • The primary objective of this study was to isolate and identify amine oxidase-producing probiotic Bacillus strains from traditional fermented soybean paste. Biogenic amines (BA)-forming bacteria isolated from the samples were identified as Bacillus sp. TS09, Bacillus licheniformis TS17, Bacillus subtilis TS19, Bacillus cereus TS23, Bacillus sp. TS30, Bacillus megaterium TS31, B. subtilis TS44, Bacillus coagulans TS46 and Bacillus amyloliquefaciens TS59. Meanwhile, B. subtilis TS04 and TS50 isolated from the same samples exhibited good probiotic properties, including the tolerance to artificial gastric juice and bile salts, the adhesion to intestinal epithelial cells, and the production of bacteriocin(s) active against BA-forming bacteria (Bacillus sp. TS30 and B. subtilis TS44). In addition, the amine oxidase produced by B. subtilis TS04 and TS50 significantly decreased the formation of BA, especially cadaverine, putrescine, and tyramine, therefore, these strains could be considered good potential probiotic candidates to prevent or reduce BA accumulation in food products.

Isolation of Biogenic Amine Non-producing Lactobacillus brevis SBB07 and Its Potential Probiotic Properties (바이오제닉 아민 비생성 Lactobacillus brevis SBB07의 분리 및 잠재적 프로바이오틱스 특성 분석)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Ryu, Myeong Seon;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • The purpose of this study was to isolate the probiotic lactic acid bacteria, and verify the possibility of the final selection strain as probiotic material. For screening of biogenic amines non-producing microorganisms, 42 lactic acid bacteria were isolated from various berries, extract and vinegar grown in Sunchang. Isolates were investigated for various physiological activities such as extracellular enzyme, antimicrobial and antioxidant activities, and 5 isolates were firstly screened. SBB07 was finally selected by analyzing the biogenic amine, and named Lactobacillus brevis SBB07 by 16S rRNA sequencing analysis. Next, SBB07 was assayed for their survival ability when exposed to acidic and bile conditions as well as heat and antibiotic resistance. As a result, SBB07 showed more than 86% and 54% higher survival rate in acidic condition at pH 2.0 and bile resistance with 0.5% oxgall. In addition, SBB07 showed a survival rate of more than 113% in $60^{\circ}C$, and also confirmed that it has resistant to various antibiotics. As a result of confirming the possibility of prebiotics, SBB07 showed the best utilization of GOS as a prebiotic substrate, and utilization of FOS and inulin were also high. These results suggest that SBB07 have good potential for application as probiotic lactic acid bacteria.