DOI QR코드

DOI QR Code

Incubation conditions affecting biogenic amines degradation of probiotic lactic acid bacteria

프로바이오틱 유산균의 바이오제닉 아민 분해능에 영향을 미치는 배양 조건

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University)
  • 임은서 (동명대학교 식품영양학과)
  • Received : 2017.09.11
  • Accepted : 2017.11.01
  • Published : 2017.12.31

Abstract

The purpose of this study was to investigate the inhibitory effect of antibacterial substances produced by probiotic lactic acid bacteria (LAB) against biogenic amines-producing bacteria and the influence of culture conditions on the antibacterial activity of bacteriocin and organic acid. The bacteriocin solutions of Lactobacillus plantarum FIL20 (64 AU/ml) and Lactobacillus paracasei FIL31 (128 AU/ml) showed strong antibacterial activity against Serratia marcescens CIH09 and Aeromonas hydrophilia RIH28, respectively. And the lactic acid contents in the cell-free culture supernatants (CFCS) obtained from FIL20 and FIL31 strains were $107.3{\pm}2.7mM$ and $129.5{\pm}4.6mM$, respectively. Therefore, the bacteriocin solution (200 AU/ml) and the CFCS ($200{\mu}l/ml$) produced by L. plantarum FIL20 and L. paracasei FIL31 significantly (P < 0.05) decreased the bacterial numbers and histamine and tyramine production ability of S. marcescens CIH09 and A. hydrophilia RIH28. The amounts of histamine and tyramine produced by the CIH09 strain under conditions of low initial pH (5.0) and incubation temperature ($15^{\circ}C$) was significantly reduced by treatment with bacteriocin solution and CFCS obtained from L. plantarum FIL20. In addition, the bacterial counts and biogenic amines contents of CIH09 strain were significantly decreased (P < 0.05) when sodium chloride (5%) or potassium nitrite (200 mg/g) were mixed with the antibacterial substances of L. plantarum FIL20. Consequently, the bacteriocin and organic acid solution of L. plantarum FIL20 and L. paracasei FIL31 can be used as a biological preservation to effectively control the production of biogenic amines by the application of hurdle technology.

본 연구에서는 프로바이오틱 유산균이 생산한 항균물질에 의한 바이오제닉 아민 생성균의 제어 효과와 박테리오신 및 유기산의 항균 활성에 영향을 미치는 배양 조건을 조사하였다. Lactobacillus plantarum FIL20 (64 AU/ml) 및 Lactobacillus paracasei FIL31 (128 AU/ml)의 박테리오신 용액은 Serratia marcescens CIH09과 Aeromonas hydrophilia RIH28에 각각 강한 항균 활성을 나타내었고 FIL20과 FIL31 균주로부터 얻은 배양 상등액 내에 유산 함유량은 각각 $107.3{\pm}2.7mM$$129.5{\pm}4.6mM$로 나타났다. 따라서 L. plantarum FIL20과 L. paracasei FIL31이 생산한 박테리오신 용액(200 AU/ml) 및 배양 상등액($200{\mu}l/ml$)의 처리에 의해 S. marcescens CIH09 및 A. hydrophilia RIH28의 균수 및 히스타민과 티라민의 생성량을 유의하게 감소시켰다(P < 0.05). 초기 pH (5.0)와 배양 온도($15^{\circ}C$)가 낮은 조건 하에서 CIH09 균주가 생산한 히스타민과 티라민의 생성량은 L. plantarum FIL20이 생산한 박테리오신 용액이나 배양 상등액 처리에 의해 유의하게 감소되었다. 또한 식염 5% 혹은 아질산 칼륨($200{\mu}g/g$)과 FIL20 유산균의 항균물질을 혼용한 경우 바이오제닉 아민을 생성하는 세균의 균수와 유해 아민 함량을 유의하게 감소시켰다(P < 0.05). 결론적으로 L. plantarum FIL20과 L. paracasei FIL31의 박테리오신 및 유기산 용액은 허들 테크놀로지에 적용하여 바이오제닉 아민 생성을 효과적으로 제어할 수 있는 생물학적 보존제로 이용될 수 있을 것이다.

Keywords

References

  1. Ayhan, K., Kolsarici, N., and Alsancak-Ozkan, G. 1999. The effects of starter culture on the formation of biogenic amines in Turkish soudjoucks. Meat Sci. 53, 183-188. https://doi.org/10.1016/S0309-1740(99)00046-7
  2. Bargossi, E., Gardini, F., Gatto, V., Montanari, C., Torriani, S., and Tabanelli, G. 2015. The capability of tyramine production and correlation between phenotypic and genetic characteristics of Enterococcus faecium and Enterococcus faecalis strains. Front. Microbiol. 6, 1371-1377.
  3. Becker, K., Southwick, K., Reardon, J., Berg, R., and MacCormack, J.N. 2001. Histamine poisoning associated with eating tuna burgers. JAMA 285, 1327-1330. https://doi.org/10.1001/jama.285.10.1327
  4. Biji, K.B., Ravishankar, C.N., Venkateswarlu, R., Mohan, C.O., Srinivasa Gopal, T.K. 2016. Biogenic amines in seafood: a review. J. Food Sci. Technol. 53, 2210-2218. https://doi.org/10.1007/s13197-016-2224-x
  5. Chin, K.D.H. and Koehler, P.E. 1986. Effect of salt concentration and incubation temperatures on formation of histamine, phenethylamine, tryptamine and tyramine during miso fermentation. J. Food Prot. 49, 423-427. https://doi.org/10.4315/0362-028X-49.6.423
  6. Cid, S.B., Miguelez-Arrizado, M.J., Beckerc, B., Holzapfel, W.H., and Vidal-Carous, M.C. 2008. Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiol. 25, 269-277. https://doi.org/10.1016/j.fm.2007.10.013
  7. Coolborn, A. 2005. Antibacterial quantification from lactic acid bacteria isolated from food sources and soil. J. Food Sci. 3, 568-571.
  8. Eerola, S., Hinkkanen, R., Lindfors, E., and Hirvi, T. 1993. Liquid chromatographic determination of biogenic amines in dry sausages. J. Assoc. Off. Anal. Chem. Int. 75, 575-577.
  9. Garcia-Ruiz, A., Gonzalez-Rompinelli, E.M., Bartolome, B., and Moreno-Arribas, M.V. 2011. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol. 148, 115-120. https://doi.org/10.1016/j.ijfoodmicro.2011.05.009
  10. Gardini, F., Ozogul, Y., Suzzi, G., Tabanelli, G., and Ozogul, F. 2016. Technological factors affecting biogenic amine content in foods: a review. Front. Microbiol. 7, 1-18.
  11. Gençcelep, H., Kaban, G., Aksu, M.I., Oz, F., and Kaya, M. 2008. Determination of biogenic amine in sucuk. Food Control 19, 868-872. https://doi.org/10.1016/j.foodcont.2007.08.013
  12. Gençcelep, H., Kaban, G., and Kaya, M. 2007. Effects of starter cultures and nitrite levels on formation of biogenic amines in sucuk. Meat Sci. 77, 424-430. https://doi.org/10.1016/j.meatsci.2007.04.018
  13. Ghanbari, M., Jami, M., Domig, K.J., and Kneifel, W. 2013. Seafood biopreservation by lactic acid bacteria- a review. LWT-Food Sci. Technol. 54, 315-324. https://doi.org/10.1016/j.lwt.2013.05.039
  14. Halasz, A., Barath, A., Simon-Sarkadi, L., Holzapfel, W. 1994. Biogenic amines and their production by micro-organisms in food. Trends Food Sci. Technol. 5, 42-49. https://doi.org/10.1016/0924-2244(94)90070-1
  15. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  16. Hu, Y., Xia, W., and Liu, X. 2007. Changes in biogenic amines in fermented silver carp sausages inoculated with mixed starter cultures. Food Chem. 104, 188-195. https://doi.org/10.1016/j.foodchem.2006.11.023
  17. Joosten, H.M.L.J. and Nunez, M. 1996. Prevention of histamine formation in cheese by bacteriocin-producing lactic acid bacteria. Appl. Environ. Microbiol. 62, 1178-1181.
  18. Kang, J.H. and Park, Y.H. 1984. Effect of food additives on histamine formation during processing and storage of mackerel. Effect of salt, acidulans and sweetenings. Bull. Korean Fish. Soc. 17, 383-390.
  19. Kanki, M., Yoda, T., Tsukamoto, T., and Baba, E. 2007. Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl. Environ. Microbiol. 73, 1467-1473. https://doi.org/10.1128/AEM.01907-06
  20. Kashket, E.R. 1987. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46, 233-244. https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
  21. Kim, M.K., Mah, J.H., and Hwang, H.J. 2009. Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chem. 116, 87-95. https://doi.org/10.1016/j.foodchem.2009.02.010
  22. Klausen, N.K. and Huss, H.H. 1987. Growth and histamine production by Morganella morganii under various temperature conditions. Int. J. Food Microbiol. 5, 147-156. https://doi.org/10.1016/0168-1605(87)90032-8
  23. Kuley, E. and Ozogul, F. 2011. Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth. Food Chem. 127, 1163-1168. https://doi.org/10.1016/j.foodchem.2011.01.118
  24. Kurt, S. and Zorba, O. 2010. Biogenic amine formation in Turkish dry fermented sausage (sucuk) as affected by nisin and nitrite. J. Sci. Food Agric. 90, 2669-2674. https://doi.org/10.1002/jsfa.4138
  25. Ladero, V., Calles-Enriquez, M., Fernandez, M., and Alvarez, M.A. 2010. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 6, 145-156. https://doi.org/10.2174/157340110791233256
  26. Latorre-Moratalla, M.L., Bover-Cid, S., Talon, R., Garriga, M., Zanardi, E., Ianieri, A., Fraqueza, M.J., Elias, M., Drosinos, E.H., and Vidal-Carous, M.C. 2010. Strategies to reduce biogenic amine accumulation in traditional sausage manufacturing. LWT-Food Sci. Technol. 43, 20-25. https://doi.org/10.1016/j.lwt.2009.06.018
  27. Lim, E.S. and Lee, N.G. 2016. Control of histamine-forming bacteria by probiotic lactic acid bacteria isolated from fish intestine. Korean J. Microbiol. 52, 352-364. https://doi.org/10.7845/kjm.2016.6041
  28. Mah, J.H., Ahn, J.B., Park, J.H., Sung, H.C., and Hwang, H.J. 2003. Characterization of biogenic amine-producing microorganisms isolated from Myeolchi-Jeot, Korean salted and fermented anchovy. J. Microbiol. Biotechnol. 13, 692-699.
  29. Mah, J.H. and Hwang, H.J. 2009. Effects of food additives on biogenic amine formation in Myeolchi-jeot, a salted and fermented anchovy (Engraulis japonicas). Food Chem. 114, 168-173. https://doi.org/10.1016/j.foodchem.2008.09.035
  30. Marcobal, A., De las Rivas, B., Landete, J.M., Tabera, L., and Munoz, R. 2012. Tyramine and phenylethylamine biosynthesis by food bacteria. Crit. Rev. Food Sci. Nutr. 52, 448-467. https://doi.org/10.1080/10408398.2010.500545
  31. Min, J.S., Lee, S.O., Jang, A., Jo, C., and Lee, M. 2007. Control of microorganisms and reduction of biogenic amines in chicken breast and thigh by irradiation and organic acids. Poult. Sci. 86, 2034-2041. https://doi.org/10.1093/ps/86.9.2034
  32. Naila, A., Flint, S., Fletcher, G., Bremer, P., and Meerdink, G. 2010. Control of biogenic amines in food-existing and emerging approaches. J. Food Sci. 75, R139-R150. https://doi.org/10.1111/j.1750-3841.2010.01774.x
  33. Nietro-Arribas, P., Poveda, J.M., Sesena, S., Palop, L., and Cabezas, L. 2009. Technological characterization of Lactobacillus isolates from traditional Manchego cheese for potential use as adjunct starter cultures. Food Control 20, 1092-1098. https://doi.org/10.1016/j.foodcont.2009.03.001
  34. Nugrahani, A., Hardoko, and Hariati, A.M. 2016. Characterization of bacteriocin Lacctobacillus casei on histamine-forming bacteria. J. Life Sci. Biomed. 6, 15-21.
  35. Priyadarshani, W.M.D. and Rakshit, S.K. 2011. Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int. J. Food Sci. Technol. 46, 2062-2069. https://doi.org/10.1111/j.1365-2621.2011.02717.x
  36. Sgouras, D., Maragkoudakis, P., Petraki, K., Martine-Gonzalez, B., Erioutou E., Michopoulas, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strains Shirota. Appl. Environ. Microbiol. 70, 518-526. https://doi.org/10.1128/AEM.70.1.518-526.2004
  37. Shakila, R.J., Vasundhara, T.S., and Rao, D.V. 1996. Inhibitory effect of spices on in vitro histamine production and histidine decarboxylase activity of Morganella morganii and on the biogenic amine formation in mackerel stored at 30${\circ}C$. Z. Lebensm. Unters. Forsch. 207, 17-76.
  38. Stadnik, J. and Dolatowski, Z.J. 2010. Biogenic amines in meat and fermented meat products. Acta Sci. Pol. Technol. Aliment. 9, 251-263.
  39. Suzzi, G. and Gardini, F. 2003. Biogenic amines in dry fermented sausages: a review. Int. J. Food Microbiol. 88, 41-54. https://doi.org/10.1016/S0168-1605(03)00080-1
  40. Tabanelli, G., Montanari, C., Bargossi, E., Lanciotti, R., Gatto, V., Felis, G., Torriani, S., and Gardini, F. 2014. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocidn forming lactococci. Int. J. Food Microbiol. 190, 14-23. https://doi.org/10.1016/j.ijfoodmicro.2014.08.023
  41. Tabanelli, G., Torriani, S., Rossi, F., Rizzotti, L., and Gardini, F. 2012. Effect of chemico-physical parameters on the histidine decarboxylase (HdcA) enzymatic activity in Streptococcus thermophilus PR160. J. Food Sci. 77, M231-M237. https://doi.org/10.1111/j.1750-3841.2012.02628.x
  42. Ten Brink, B., Damink, C., Joosten, H.M.L.J., and Huis Veld, J.H.J. 1990. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73-84. https://doi.org/10.1016/0168-1605(90)90040-C
  43. Toy, N., Ozogul, F., and Ozogul, Y. 2015. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth. Food Chem. 173, 45-53. https://doi.org/10.1016/j.foodchem.2014.10.001
  44. Veskovic Moracanin, S., Dukic, D.A., and Memisi, N.R. 2014. Bacteriocins produced by lactic acid bacteria-a review. APTEFF 45, 271-283.
  45. Visciano, P., Schirone, M., Tofalo, R., and Suzzi, G. 2012. Biogenic amines in raw and processed seafood. Front. Microbiol. 3, 1-10.
  46. Wendakkon, C.N. and Sakaguchi, M. 1993. Combined effects of cloves with potassium sorbate and sodium benzoate on the growth and biogenic amine production of Enterobacter aerogenes. Biosci. Biotechnol. Biochem. 57, 678-679. https://doi.org/10.1271/bbb.57.678
  47. Yongjin, H., Wenshui, X., and Xiaoyong, L. 2007. Changes in biogenic amines in fermented silver carp sausages inoculated with mixed starter cultures. Food Chem. 104, 188-195. https://doi.org/10.1016/j.foodchem.2006.11.023
  48. Zaman, M.Z., Abdulamir, A.S., Bakar, F.A., Selamat, J., and Bakar, J. 2009. A review: microbiological, physicochemical and health impact of high level of biogenic amines in fish sauce. Am. J. Appl. Sci. 6, 1199-1211. https://doi.org/10.3844/ajassp.2009.1199.1211
  49. Zhang, Q., Lin, S., and Nie, X. 2013. Reduction of biogenic amine accumulation in silver carp sausage by an amine-negative Lactobacillus plantarum. Food Control 32, 496-500. https://doi.org/10.1016/j.foodcont.2013.01.029
  50. Zhang, K. and Ni, Y. 2014. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Protein Expr. Purif. 94, 33-39. https://doi.org/10.1016/j.pep.2013.10.018