• Title/Summary/Keyword: 바이오매스 촤

Search Result 19, Processing Time 0.026 seconds

CO2 Gasification of Carbon Materials by Microwave Heating (마이크로파 가열에 의한 탄소물질의 CO2 가스화)

  • SONG, HEE GAEN;KIM, EUN HYUK;CHUN, YOUNG NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Recently, the gradual increase in energy acceptance is mostly satisfied by fossil fuels, but research and development of renewable energy sources are attracting attention due to fossil fuel supply and greenhouse gas problem. The disadvantage is that renewable energy can not be produced continuously. This being so, energy storage is an important technology in renewable energy. In this study, microwave was used to convert carbon receptor-carbon dioxide to gas fuel.

Synthesis Gas Production from Gasification of Woody Biomass (목질계 바이오매스로부터 가스화에 의한 합성가스 제조 연구)

  • Cho, Won-Jun;Mo, Yong-Gi;Song, Taek-Yong;Baek, Young-Soon;Kim, Seung-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas has played an important role of synthesizing the valuable chemical compounds, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuel and chemicals. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C$/min in thermogravimetric analysis. Bubbling fluidized bed reactor was used to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, $CO_2$, $H_2$ and a small fraction of $C_1-C_4$ hydrocarbons.

Steam Gasification Kinetics of Sawdust Char at High Temperature (톱밥 촤의 고온 수증기 가스화 특성)

  • Roh, Seon Ah;Yun, Jin Han;Keel, Sang In;Min, Tai Jin;Lee, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.821-825
    • /
    • 2014
  • Steam gasification of sawdust char was performed in a thermobalance reactor at high temperature. Gasification temperature was changed from $850^{\circ}C$ to $1400^{\circ}C$ and steam partial pressure was 0.3, 0.5 and 0.7 atm. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric model was an appropriate model. Reaction control regime and diffusion control regime were distinct depending on the temperature. Apparent activation energy and pre-exponential factors for both of the regimes were evaluated and the effects of steam partial pressure were examined. $H_2$ concentration in the produced gas was two times higher than that of CO due to the gasification accompanying by the water gas shift reaction.

Decomposition of primary tar influenced by char particle types and reaction time during biomass gasification (바이오매스 가스화시 촤 입자 종류 및 반응시간에 따른 일차타르의 분해 특성)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.33-36
    • /
    • 2014
  • Gasification of biomass produces syngas containing CO, $H_2$ and/or $CH_4$, which can then be converted into energy or value-added fuels. One of key issues for efficient gasification is to minimize tar concentration in the syngas for use in a final conversion device such as gas engine. This study investigated the decomposition of primary tar by catalytic cracking using char as catalyst, of which the feature can be integrated into a fixed bed gasifier design. The pyrolysis vapor containing tar from pyrolysis of wood at $500^{\circ}C$ was passed through a reactor filled with or without char at $800^{\circ}C$ for a residence time of 1, 3 or 5 sec. Then, the condensable vapor (water and tar) and gases were analyzed for the yields and elemental composition. Four types of char particles with different microscopic surface area and pore size distribution: wood, paddy straw, palm kernel shell and activated carbon. The results were analyzed for the mass and carbon yields of tar and the composition of product gases to conclude the effects of char types and residence time.

  • PDF

Characteristics of Tar Generation during the interval of Gasification of Woodchip (탈휘발 과정과 촤가스화 과정에서 목질계 바이오매스의 타르발생 특성)

  • Moon, Ji-Hong;Lee, Uen-Do;Ryu, Chang-Kook;Lee, Youn-Man;Bae, Woo-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Biomass gasification is a promising technology in terms of clean energy and flexible options for end use such as heat, steam, electricity, gaseous or liquid fuels. In a gasification process, reduction of tar is very important because it can cause any mechanical problems and small tar implies high energy efficiency. However, generation and conversion mechanisms of tar have not been fully understood due to its complex nature. In this study, characteristics of tar generated from different gasification stages were investigated. Korean pine woodchip was used as feedstock and tar was sampled in a separate way during devolatilization and char gasification stage, investigated. As a result. more various kinds of hydro carbon compounds were identified in the devolatilization stage than char gasification stage because primary tar compounds are released mostly from pyrolysis of cellulose and hemicellulose. When the reaction temperature increased up to $900^{\circ}C$, tar composition becomes simplified into about 10 aromatic compounds mostly with 1-4 rings without substitution up to phenanthrene. The sampled tar in the char gasification stage mostly contains 5-7 simple aromatic compounds.

Characteristics of Bio-oil derived from Quercus Acutissima in a Fluidized Bed Pyrolyser (유동층 열분해로에 의하여 생산된 상수리나무 바이오오일의 특성)

  • Lee Sun-Hoon;Eom Min-Seop;Yoo Kyung-Seun;Lee Young-Soo;Kim Nam-Chan;Lee See-Hoon;Lee Jae-Goo;Kim Jae-Ho
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.3-11
    • /
    • 2006
  • Fast pyrolysis of Quercus acutissima was carried out in a fluidized bed pyrolyser and then the physicochemical properities of obtained bio-oil were analyzed using GC/MS. The yields of bio-oil of Quercus acutissima and Larix leptolepis from a fluidized bed pyrolyzer were maximized at $350^{\circ}C\;and\;400^{\circ}C$, respectively. This is due to the difference or cellulose content between the two tree species. Above the optimum temperature, the yields of char and oil decreased as the reaction temperature increased, but the yield of gas-phase and water fraction increased. It is concluded that this phenomenon is occured by secondary pyrolysis in the free board. The feeding rate of the sample in a fluidized bed pyrolyser did not affect the yields and composition of products, because of a sufficient mixing between bed materials and sand.

The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak (굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향)

  • Lee, Ji Young;Lee, Hyung Won;Kim, Young-Min;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.350-355
    • /
    • 2018
  • In this study, the effect of biomass torrefaction on the thermal and catalytic pyrolysis of cork oak was investigated. The thermal and catalytic pyrolysis behavior of cork oak (CO) and torrefied CO (TCO) were evaluated by comparing their thermogravimetric (TG) analysis results and product distributions of bio-oils obtained from the fast pyrolysis using a fixed bed reactor. TG and differential TG (DTG) curves of CO and TCO revealed that the elimination amount of hemicellulose in CO increased by applying the higher torrefaction temperature and longer torrefaction time. CO torrefaction also decreased the oil yield but increased that of solid char during the pyrolysis because the contents of cellulose and lignin in CO increased due to the elimination of hemicellulose during torrefaction. Selectivities of the levoglucosan and phenolics in TCO pyrolysis oil were higher than those in CO pyrolysis oil. The content of aromatic hydrocarbons in bio-oil increased by applying the catalytic pyrolysis of CO and TCO over HZSM-5 ($SiO_2/Al_2O_3=30$). Compared to CO, TCO showed the higher efficiency on the formation of aromatic hydrocarbons via the catalytic pyrolysis over HZSM-5 and the efficiency was maximized by applying the higher torrefaction and catalytic pyrolysis reaction temperatures of 280 and $600^{\circ}C$, respectively.

The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends (바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구)

  • KIM, JONG-HO;PARK, KYEONG-HOON;KIM, GYEONG-MIN;PARK, KYEONG-WON;JEONG, TAE-YONG;LEE, YOUNG-JOO;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.

Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor (Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성)

  • Choi, Jae-Wook;Son, Deokwon;Suh, Dong Jin;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 2018
  • Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of $412^{\circ}C$ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was $23.6MJ\;kg^{-1}$, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonica-derived pyrolysis oil. The bio-char has low higher heating value ($13.0MJ\;kg^{-1}$) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.