DOI QR코드

DOI QR Code

CO2 Gasification of Carbon Materials by Microwave Heating

마이크로파 가열에 의한 탄소물질의 CO2 가스화

  • SONG, HEE GAEN (Department of Environmental Engineering, Chosun University) ;
  • KIM, EUN HYUK (Department of Environmental Engineering, Chosun University) ;
  • CHUN, YOUNG NAM (Department of Environmental Engineering, Chosun University)
  • 송희관 (조선대학교 공과대학 환경공학과) ;
  • 김은혁 (조선대학교 공과대학 환경공학과) ;
  • 전영남 (조선대학교 공과대학 환경공학과)
  • Received : 2018.11.21
  • Accepted : 2019.02.28
  • Published : 2019.02.28

Abstract

Recently, the gradual increase in energy acceptance is mostly satisfied by fossil fuels, but research and development of renewable energy sources are attracting attention due to fossil fuel supply and greenhouse gas problem. The disadvantage is that renewable energy can not be produced continuously. This being so, energy storage is an important technology in renewable energy. In this study, microwave was used to convert carbon receptor-carbon dioxide to gas fuel.

Keywords

SSONB2_2019_v30n1_35_f0001.png 이미지

Fig. 1. Carbon-CO2 gasification for energy storage

SSONB2_2019_v30n1_35_f0002.png 이미지

Fig. 3. Results of carbon-CO2 gasification in energy storage

SSONB2_2019_v30n1_35_f0003.png 이미지

Fig. 4. Effect of gasification temperature in the microwave-heating gasification

SSONB2_2019_v30n1_35_f0005.png 이미지

Fig. 6. Effect of carbon receptors in the microwave-heating gasification

SSONB2_2019_v30n1_35_f0006.png 이미지

Fig. 2. Microwave gasification test setup

SSONB2_2019_v30n1_35_f0007.png 이미지

Fig. 5. Effect of gas flow rate in the microwave-heating gasification

Table 1. Chemical characteristics of the carbon materials for microwave receptor

SSONB2_2019_v30n1_35_t0001.png 이미지

Table 2. Inorganic composition of the carbon materials for microwave receptor (wt%)

SSONB2_2019_v30n1_35_t0002.png 이미지

References

  1. A. A. Akhil, G. Huff, A. B. Currier, B. C. Kaun, D. M. Rastler, S. B. Chen, A. L. Cotter, D. T. Bradshaw, and W. D. Gauntlett, "Electricity storage handbook", U.S. Department of Energy, U.S., 2013.
  2. N. S. Lewis and D. G. Nocera, "Powering the planet: Chemical challenger in solar energy utilization", Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 43, 2006, pp. 15729-15735, doi: https://doi.org/10.1073/pnas.0603395103.
  3. J. M. Bermudez, E. Ruisanchez, A. Arenillas, A. H. Moreno, and J. A. Menendez, "New concept for energy storage: Microwave-induced carbon gasification with CO2", Energy Conversion and Management, Vol. 78, 2014, pp. 559-564, doi: https://doi.org/10.1016/j.enconman.2013.11.021.
  4. B. Fidalgo, A. Dominguez, J. J. Pis, and J. A. Menendez, "Microwave-assisted dry reforming of methane", International Journal of Hydrogen Energy, Vol. 33, No. 16, 2008, pp. 4337-4344, doi: https://doi.org/10.1016/j.ijhydene.2008.05.056.
  5. J. A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez. L. Zubizarreta, E. G. Calvo, and J. M. Bermudez. "Microwave heating processes involving carbon materials", Fuel Processing Technology, Vol. 91, No. 1, 2010, pp. 1-8, doi: https://doi.org/10.1016/j.fuproc.2009.08.021.
  6. Y. Kong and C. Y. Cha, "Reduction of $NO_x$ adsorbed on char with microwave energy", Carbon, Vol. 34, No. 8, 1996, pp. 1035-1040, doi: https://doi.org/10.1016/0008-6223(96)00051-6.
  7. C. Y. Cha and D. S. Kim, "Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed", Carbon, Vol. 39, No. 8, 2001, pp. 1159-1166, doi: https://doi.org/10.1016/S0008-6223(00)00240-2.
  8. P. Lahijani, M. Mohammadi, Z. A. Zainal, and A. R. Mohamed, "Improvement of biomasss char-CO2 gasification reactivity using microwave irradiation and natural catalyst", Thermochimica Acta, Vol. 604, 2015, pp. 61-66, doi: https://doi.org/10.1016/j.tca.2015.01.016.
  9. Y. N. Chun and B. R. Jeong, "Characteristics of the microwave pyrolysis and microwave $CO_2$-assisted gasification of dewatered sewage sludge", Environmental technology, Vol. 39, No. 19, 2018, pp. 2484-2494, doi: https://doi.org/10.1080/09593330.2017.1357758.