DOI QR코드

DOI QR Code

Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor

Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성

  • Choi, Jae-Wook (School of Chemical and Biological Engineering, Seoul National University) ;
  • Son, Deokwon (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Suh, Dong Jin (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hwayong (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Youn-Woo (School of Chemical and Biological Engineering, Seoul National University)
  • 최재욱 (서울대학교 화학생물공학부) ;
  • 손덕원 (한국과학기술연구원 청정에너지연구센터) ;
  • 서동진 (한국과학기술연구원 청정에너지연구센터) ;
  • 김화용 (서울대학교 화학생물공학부) ;
  • 이윤우 (서울대학교 화학생물공학부)
  • Received : 2017.11.02
  • Accepted : 2017.11.13
  • Published : 2018.03.30

Abstract

Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of $412^{\circ}C$ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was $23.6MJ\;kg^{-1}$, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonica-derived pyrolysis oil. The bio-char has low higher heating value ($13.0MJ\;kg^{-1}$) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.

오거 반응기를 이용하여 해조류 바이오매스인 다시마로부터 열분해 오일 제조 실험을 수행하였으며, 열분해 오일의 물리화학적 특성을 살펴보았다. 주요 공정 변수인 열분해 온도 및 오거 컨베이어 속도의 최적 조건은 각각 $412^{\circ}C$, 20 rpm이었으며, 이 때 열분해 오일의 최대 수율은 32 wt%이었다. 낮은 탄소 함량 및 높은 산소 함량으로 인해, 다시마 유래 열분해 오일의 발열량($23.6MJ\;kg^{-1}$)은 기존 화석연료의 약 60% 이었다. 열분해 오일의 GC/MS 분석 결과, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone, isosorbide 등이 주요 화합물로 확인되었다. 촤는 탄소 함량이 낮고 산소함량이 높아 발열량($13.0MJ\;kg^{-1}$)이 낮으며 다량의 무기 성분 및 황을 포함하고 있는 것으로 확인되었다.

Keywords

References

  1. Jung, K. A., Lim, S.-R., Kim, Y., and Park, J. M., "Potentials of Macroalgae as Feedstocks for Biorefinery," Bioresour. Technol., 135, 182-190 (2013). https://doi.org/10.1016/j.biortech.2012.10.025
  2. Ryu, J. K., Cho, J. H., and D. Y., K., Strategies to Industrialize the Algae Bio-Business and Policy Direction (Korean), Policy Research, Korea Maritime Institute, Seoul, Korea, 2009.
  3. Bridgwater, A. V., Meier, D., and Radlein, D., "An Overview of Fast Pyrolysis of Biomass," Org Geochem., 30, 1479-1493 (1999). https://doi.org/10.1016/S0146-6380(99)00120-5
  4. Demirbas, A., and Arin, G., "An Overview of Biomass Pyrolysis," Energ. Source, 24, 471-482 (2002). https://doi.org/10.1080/00908310252889979
  5. Zhang, L. H., Xu, C. B., and Champagne, P., "Overview of Recent Advances in Thermo-Chemical Conversion of Biomass," Energ. Convers. Manage., 51, 969-982 (2010). https://doi.org/10.1016/j.enconman.2009.11.038
  6. Balat, M., "An Overview of the Properties and Applications of Biomass Pyrolysis Oils," Energ. Source Part A, 33, 674-689 (2011). https://doi.org/10.1080/15567030903228914
  7. Lu, Q., Zhang, Z. B., Zhang, C. J., Su, S. H., Li, W. Y., and Dong, C. Q., "Overview of Chemical Characterization of Biomass Fast Pyrolysis Oils," Appl. Mech. Mater., 130-134, 422-425 (2012).
  8. Pimenidou, P., and Dupont, V., "Characterisation of Palm Empty Fruit Bunch (pefb) and Pinewood Bio-Oils and Kinetics of their Thermal Degradation," Bioresour. Technol., 109, 198-205 (2012). https://doi.org/10.1016/j.biortech.2012.01.020
  9. Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., and Pittman, C. U., "Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-Oils," Energy & Fuels, 22, 614-625 (2008). https://doi.org/10.1021/ef700335k
  10. Anastasakis, K., Ross, A. B., and Jones, J. M., "Pyrolysis Behaviour of the Main Carbohydrates of Brown Macro-Algae," Fuel, 90, 598-607 (2011). https://doi.org/10.1016/j.fuel.2010.09.023
  11. Zhao, H., Yan, H., Dong, S., Zhang, Y., Sun, B., Zhang, C., Ai, Y., Chen, B., Liu, Q., Sui, T., and Qin, S., "Thermogravimetry Study of the Pyrolytic Characteristics and Kinetics of Macro-Algae Macrocystis Pyrifera Residue," J. Thermal Anal. and Calorim., 111, 1685-1690 (2013). https://doi.org/10.1007/s10973-011-2102-8
  12. Wang, S., Hu, Y. M., Uzoejinwa, B. B., Cao, B., He, Z. X., Wang, Q., and Xu, S. N., "Pyrolysis Mechanisms of Typical Seaweed Polysaccharides," J. Anal. Appl. Pyrol., 124, 373-383 (2017). https://doi.org/10.1016/j.jaap.2016.12.005
  13. Choi, J. H., Kim, S.-S., Suh, D. J., Jang, E.-J., Min, K.-I., and Woo, H. C., "Characterization of the Bio-Oil and Bio-Char Produced by Fixed Bed Pyrolysis of the Brown Alga Saccharina Japonica," Korean J. Chem. Eng., 33, 2691-2698 (2016). https://doi.org/10.1007/s11814-016-0131-5
  14. Choi, J.-W., Choi, J. H., Suh, D. J., and Kim, H., "Feasibility of Laminaria Japonica as a Feedstock for Fast Pyrolysis in a Bubbling Fluidized-Bed Reactor," J. Anal. Appl. Pyrol., 112, 141-149 (2015). https://doi.org/10.1016/j.jaap.2015.02.004
  15. Bae, Y. J., Ryu, C., Jeon, J.-K., Park, J., Suh, D. J., Suh, Y.-W., Chang, D., and Park, Y.-K., "The Characteristics of Bio-Oil Produced from the Pyrolysis of Three Marine Macroalgae," Bioresour. Technol., 102, 3512-3520 (2011). https://doi.org/10.1016/j.biortech.2010.11.023
  16. Ly, H. V., Kim, S.-S., Woo, H. C., Choi, J. H., Suh, D. J., and Kim, J., "Fast Pyrolysis of Macroalga Saccharina Japonica in a Bubbling Fluidized-Bed Reactor for Bio-Oil Production," Energy, 93, 1436-1446 (2015). https://doi.org/10.1016/j.energy.2015.10.011
  17. Vassilev, S. V., Baxter, D., Andersen, L. K., and Vassileva, C. G., "An Overview of the Chemical Composition of Biomass," Fuel, 89, 913-933 (2010). https://doi.org/10.1016/j.fuel.2009.10.022
  18. Vertes, A. A., Biomass to Biofuels : Strategies for Global Industries, Wiley, Hoboken, N.J., 2010.
  19. Kato, Y., Enomoto, R., Akazawa, M., and Kojima, Y., "Characterization of Japanese Cedar Bio-Oil Produced using a Bench-Scale Auger Pyrolyzer," Springerplus, 5, (2016).
  20. Solar, J., de Marco, I., Caballero, B. M., Lopez-Urionabarrenechea, A., Rodriguez, N., Agirre, I., and Adrados, A., "Influence of Temperature and Residence Time in the Pyrolysis of Woody Biomass Waste in a Continuous Screw Reactor," Biomass Bioenerg., 95, 416-423 (2016). https://doi.org/10.1016/j.biombioe.2016.07.004