• Title/Summary/Keyword: 바이모달 트램

Search Result 84, Processing Time 0.033 seconds

Prediction of Lane Flooding on a Model Site for Rainfall Safety of Rubber-tired Tram (바이모달 트램 모의운행지역에서의 강우에 대한 노선침수 예측)

  • Park, Young-Kon;Yoon, Hee-Taek;Lim, Kyoung-Jae;Kim, Jong-Gun;Park, Youn-Shik;Kim, Tae-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1209-1212
    • /
    • 2007
  • Urban flooding with surcharges in sewer system was investigated because of unexpected torrential storm events these days, causing significant amounts of human and economic damages. Although there are limitations in forecasting and preventing natural disasters, integrated urban flooding management system using the SWMM(Storm Water Management Model) engine and Web technology will be an effective tool in securing safety in operating rubber-tired transportation system. In this study, the study area, located in Chuncheon, Kangwon province, was selected to evaluate the applicability of the SWMM model in forecasting urban flooding due to surcharges in sewer system The catchment are 21.10 ha in size and the average slope is 2% in lower flat areas. Information of subcatchment, conjunctions, and conduits was used as the SWMM interface to model surface runoff generation, water distribution through the sewer system and amount of water overflow. Through this study, the applicability of the SWMM for urban flooding forecasting was investigated and probability distribution of storm events module was developed to facilitate urban flooding prediction with forecasted rainfall amounts. In addition, this result can be used to the establishment of disaster management system for rainfall safety of rubber-tired tram in the future.

  • PDF

A Study on the AWS (All Wheel Steering) ECU Test considering Requirement for Behavior of Bi-modal Tram (바이모달 트램의 거동을 요구사항으로 고려한 전차를 조향 시스템 테스트에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won;Lee, Soo-Ho;Jung, Ki-Hyun;Choi, Kyung-Hee;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.229-238
    • /
    • 2009
  • In this paper, AWS ECU test method, which is considering behavior of a Bi-modal tram, is described. In order to evaluate the performance of an electronic automotive ECU, the method which combines HILS (Hardware In the Loop Simulation) and RBT (Requirement Based Testing) is introduced. HILS is the method to predict the behavior of a vehicle adopting an ECU. The behavior of a Bi-modal tram can be analyzed by using the vehicle dynamic model. Requirement Based Testing compare the outputs of a real system with a virtual electronic unit (oracle) which created by the requirements. Rear axles of the Bi-modal tram are independently controlled by two AWS ECU. Especially, swing out can happen when an articulated vehicle is operated in the curved road. Therefore dynamic behaviour of a Bi-modal tram is considered at this situation. Through this study, the reliability of ECU can be verified economically and safely using the proposed test method before conducting the track test.

  • PDF

Development of AV2SWMM Module for Bimodal Tram Disaster Management System (바이모달 트램 재해관리 시스템 입력자료 구축을 위한 AV2SWMM 모듈 개발)

  • Kim, Jong-Gun;Park, Young-Kon;Yoon, Hee-Taek;Park, Youn-Shik;Jang, Won-Seok;Park, Jun-Ho;Lim, Kyoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.143-146
    • /
    • 2008
  • With unexpected torrential rainfall, flash flooding is occurring frequently and its impacts are tremendous. Thus proper natural disaster management plans are required. The disaster management system of the Bimodal tram utilizes the SWMM as a core engine to simulate runoff and urban sewer networks for flooding simulation. To develop the efficient Bimodal tram disaster management system, very detailed subcatchment boundaries and flow networks have to be developed in a GIS data format. Thus the objective of this study is to develop ArcView GIS based module (AV2SWMM) for easy preparation of model input for the tram disaster management system. With the AV2SWMM module, very detailed subcatchment boundaries and flow networks can be developed for accurate simulation of flash flooding at the study site, which were not/hardly possible with SWMM 5.0 interface. The AV2SWMM can be used in developing accurate model input for other regions where the Bimodal tram system is expected to be introduced.

  • PDF

Design Specifications of Car body and Interiors for Bimodal Tram Vehicle (바이모달 트램 차량용 차체 및 실내의장의 설계사양)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Park, Tae-Young;Cho, Se-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.975-979
    • /
    • 2008
  • Since tram has the advantages to reduce construction cost of infrastructure, to improve accessibility of passengers, and to offer visual pleasures, nowadays, it is one of light rails attracting public attention. Tram can be classified into two groups, one is a conventional steel-wheeled type, and the other is a rubber-tired type (bi-modal tram). The bi-modal tram propelled by the serial CNG hybrid propulsion unit has been developing since 2003 in Korea, which can realize both scheduled operation of railway and route flexibility of bus. Because the bimodal will be operated on both railway mode and bus mode, however, specific criteria and regulations for its design, certification, construction, operation and maintenance have not been determined definitely yet. In consideration of mobility enhancement for the old and the handicapped, motor vehicle safety standard and urban transit (railway vehicle) safety standard, several design specifications were proposed for car body and interiors of the bimodal tram vehicle. The design specifications proposed in this paper can be expected to promote passengers' comfort and safety, operation efficiency of the bimodal tram.

  • PDF

A Study on the Emergency Management of Bimodal Tram (바이모달 트램의 재해시 운영관리에 관한 연구)

  • Park, Young-Kon;Yoon, Hee-Taek;Yoon, Jong-Hack
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.118-121
    • /
    • 2008
  • Bimodal tram is a transit with no-step floor for wheel-chaired persons, with docking to the station precisely and moving on schedule like train. Because of the automatic traveling of bimodal tram to search and follow the magnet embedded in roadway, bimodal tram should be careful about rainfall, snow and wind like a car driving on roadway in respect to natural disasters. Though response procedures in emergency are different according to the passengers' boarding, emergency mobilization is needed if any emergency situation happens. Emergency mobilization is the act of preparing for major catastrophic events, which may affect public transportation systems or their service areas, by assembling and organizing resources, including people, equipment, facilities, communications systems, expert technical support, and public information systems and protocols. Mobilization is the process that ensures that the right people will deploy appropriate resources at the correct time. Effective mobilization requires a partnership of local and state agencies. Public transportation operators and systems play vital roles in response to and recovery from emergencies and other unexpected catastrophic events. These systems, and their capabilities to mobilize resources, are profoundly affected by the decisions and directives of others during these activities. In this study, we focused on the emergency management for bimodal tram and reviewed the considerations about infrastructures under natural disasters, especially heavy rainfall.

  • PDF

Development of Flooding area estimation module for Rubber-tired Tram Disaster Management System Using the SWMM Model (SWMM 모형을 이용한 홍수시 바이모달 트램 운행 노선에 대한 침수 면적 산정 모듈 개발)

  • Kim, Jong-Gun;Park, Young-Kon;Yoon, Hee-Taek;Park, Youn-Shik;Jang, Won-Seok;Yoo, Dong-Seon;Lim, Kyoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.61-65
    • /
    • 2008
  • Urban flooding with surcharges in sewer system was investigated because of unexpected torrential storm events these days, causing significant amounts of human and economic damages. Although there are limitations in forecasting and preventing natural disasters, integrated urban flooding management system using the SWMM engine and Web technology will be an effective tool in securing safety in operating Bi-modal transportation system. In addition, the integrated urban flooding management system can be linked with general and transportation-related disaster management system in the future. In this study, With simulated values by the SWMM, which is a core engine of the Bi-modal disaster management system, flash flooding area estimation module was developed. Thus, the SWMM system codes were modified and new module was developed and integrated with the existing SWMM interface using the Delphi programming language. The flash flooding area estimation module is fully integrated with the SWMM interface, thus the area is estimated on-the-fly inside the system.

  • PDF

Study on Vehicle Infra System of Bimodal Tram (바이모달트램 차량인프라시스템에 관한 연구)

  • Lee, Kang-Won;Yoon, Hee-Taek;Park, Young-Kon;Hwang, Eui-Kyeong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2147-2152
    • /
    • 2011
  • This study of bimodal integration management system in conjunction with the tram and the tram cars bimodal integrated management system that occupies a part of the system to perform its role as a bimodal tram vehicle configuration, a device for the vehicle's infrastructure ryureul development and it is aimed to build on the vehicle. Bimodal tram vehicle infrastructure systems, internal and external information of the larger vehicles, and vehicles used to collect information for its own part and the integrated operations management center, or providing partial information from the station and collect/provide for the transfer of information to the communication part consists In this study, the core of these devices, the configuration of the vehicle infrastructure systems for the overall management and control of vehicles operating a computer's central processing device, vehicle infrastructure systems that make it manages and stores all jangchiryu Integrated Operations Management Center is reporting. In addition, seamless integration with operational management center for interactive communication in a vehicle mounted communications devices to maintain the best condition to manage. Current general traffic management system in a similar terminal device being used, but bimodal tram vehicles operating the computer of the vehicle operates the infrastructure to configure the devices around the one to configure the system in terms of step enhanced the active type, the operating terminal unit of inter active type. In this study, considering the future alignment of the accounting fee system, the expansion of the system reliability and stability around the activities that are underway.

  • PDF

Evaluations of the Robustness of Guidance Controller for a Bimodal Tram (바이모달트램 안내제어기의 강인성 평가)

  • Yun, Kyong-Han;Lee, Yong-Sang;Min, Kyung-Deuk;Kim, Young-Chol;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1924-1934
    • /
    • 2011
  • This paper is concerned with the robustness evaluations of the guidance controller for a bimodal tram which is being developed by the Korea Railroad Research Institute (KRRI). The bimodal tram is an all-wheel steered multiple-articulated vehicle as a new kind of transportation vehicle. This vehicle has to be equipped with an automatic guidance system. In [1], such a controller has been recently proposed. However, since the performance is affected by weight change of the vehicle due to number of the passenger, model parameter uncertainties depending on the state of friction and the elasticity of the tire, and a typhoon, the controller designed must be examined with these conditions. As expected, because the vehicle dynamics is highly nonlinear, for the sake of investigating the robustness of the controller we compose two simulation ways based on the vehicle models which are implemented by the ADAMS and the MATLAB/LabVIEW toolboxes. Different uncertainties and a typhoon disturbance have been considered for the simulation conditions. Simulation results are shown.

Analysis of Applicability in the Public Transportation System considering the Cost-volume Supply Curve of New Transit System Bi-Modal Tram (녹색 신교통 시스템 바이모달트램의 비용-수요 공급곡선을 고려한 도시 대중교통체계 적용 특성 분석)

  • Kim, Hong-Seok;Kim, Ryang-Gyun;Ham, Jae-Hyun;Jeon, Jae-Cheong;Yoon, Hee-Taek
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2303-2308
    • /
    • 2010
  • We studied the cost-volume supply characteristic of public transportation systems focused on Bi-modal Tram in the main cities to analyze the applicability and status for the new transit system Bi-modal Tram as public transportation system. The operation cost considering the characteristic of vehicle, facilities, operation and average cost for respective public transportation system and the time cost considering the travel and transfer time are defined to the social cost, and the cost-volume supply curve is based on this social cost. The cost-volume supply characteristic between public transportation modes in the city is determined on the basis of cost-volume supply curve. Through the comparison between cost-volume supply characteristic of main transportation systems, it is analyzed about the relation between public transportation systems in the city and the characteristic for proper service provision. The application of Bi-modal Tram in the city is concluded that it is effective to reduce the social cost on the existing public transportation system.

  • PDF

Design of Navigation Control System for Bi-Modal Tram (바이모달트램의 자동운전시스템 설계)

  • Ryu, Je;Hwang, Byoung-Il;Lee, Sang-Nam;Ryu, Hee-Moon;Byun, Yeun-Sub
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1060-1066
    • /
    • 2008
  • Bi-modal tram is a new conceptual transit mean for public transportation integrating thoroughfare and railroad vehicle's characteristics together. This paper describes about a software design which will be applied to an automatic driving system, which is called NCS (Navigation Control System), considering such multiplicity of mechanical characteristic. The NCS adopts propulsion, braking, and direction control functions for a tram and utilizes various sensors to fully take control over such functions. In this paper, we defined and analyzed the capabilities of the NCS. Those capabilities are designed with a UML 2.0 based object-oriented modeling technique. Moreover, to ensure the complete operation of such capabilities, a communication protocol (which is capable of controlling sensors, propulsion, brakes, and traveling directions) is designed here. Throughout the paper, firstly, all the NCS related functions are discussed in accordance with the equipments they are belonged to; secondly the UML modeling application techniques for the defined functions and protocols for the communications between equipments are introduced; and lastly a validation process for the design specifications is going to be discussed.

  • PDF