• Title/Summary/Keyword: 바이러스단백질

Search Result 360, Processing Time 0.028 seconds

한국형 B형 간염 바이러스 elongated X 단백질의 기능 및 간암 유발 기작에 관한 연구 (I)

  • 노현모
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.265-265
    • /
    • 1994
  • 본 연구는 간염 바이러스의 X 및 elongated X 유전자를 클로닝하여 E. coli에서 대량 발현시진 후, 그 기능을 여러 측면에서 연구하교 지금까지 알려진 oncogene products, tumor suppressor, 그리고 그 밖의 다른 암 유발인자와의 interaction에 대해 분석함으로써 간암 생성의 분자적 기작을 이해하고 더 나아가 간암의 예방 및 치료제의 개발을 목표로 하였다. 그 일차적 연구로서 이전에 플로닝된 mutant hepatitis Bvirus genome으로부터 X 및 elongated X 유전자를 클로닝하였으며, E. coli에서 대량 발현시키기 위하여 T7 bacteriophage promoter아래에 재 클로닝하였다. 이러한 X 및 ebngated X 유전자를 E. coli에서 대량 발현시킨 후, rabbit anti-X antibody를 이용하여 western blotting을 수행함으로서 이를 확인하였으며 DEAE-cellulose와 heparin-agarose chromategraphy를 이용하여 순수분리하였다. 순수분리된 X 및 etongated X 단백질을 highly differentiated hepatoma cell인 HepG$_2$ cell에 처리하여 transactivation activity를 측정하였다. 그 결과 순수분리된 단백질들이 SV4O promoter를 transactivation 함을 할 수 있었으며, 이로부터 클로닝된 유전자들이 모두 정상적인 기능을 가짐을 확인하였다. 그러고 X 유전자의 작용기작을 규명하기위하여 restriction endonuclease를 이용하여 5 개의 mutant X 유전자를 구성하였으며 현재 이를 HepG2 cell에 transfection 하여 그 기능을 연구하고 있다.

  • PDF

Analysis of Virus Types by a Latent Variable Model (Latent variable model에 의한 바이러스 유형 분석)

  • Kim Soo-Jin;Joung Je-Gun;Tae Kang Soo;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.262-264
    • /
    • 2005
  • 인유두종 바이러스(Human Papillomavirus: HPV)는 사마귀로부터 생식기 및 배설기의 침윤성 암에 이르기까지 여러 질병과 연관되어 있음이 알려져 있다. 현재 200종 이상이 알려져 있고, 이 중 85개는 전체 유전자가 밝혀져 있다. HPV 감염 시 만들어지는 단백질 중 E6. E7 단백질은 암 억제 유전자(p53, pRb)에 결합하여 세포의 암 억제 기능을 저하시키고 이로 인해 암을 발생시킨다. 본 논문은 암 발생과 밀접한 관련이 있는 HPV의 E6 단백질 서열과 HPV 유형(HPV Type)을 가지고, PLSA (Probabilistic Latent Semantic Analysis) 방법을 이용하여 HPV를 클러스터링(clustering) 해 보았다. 실험 결과, 특정 클러스터는 질병과 밀접하게 연관되어 있으며, 이와 관련된 주요 서열 분석이 가능함을 보여주고 있다.

  • PDF

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus (폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성)

  • Kim, Eunseong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

연구실 탐방-진로종합연구소

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.28 no.12 s.319
    • /
    • pp.86-87
    • /
    • 1995
  • 주류 메이커 (주)진로의 부설연구소인 진로종합연구소는 최근 항바이러스성 단백질을 이용한 새로운 항바이러스 생물농약제제를 개발해 업계의 관심을 끌고 있다. 농작물에 치명적인 피해를 주는 식물성 바이러스병에 대한 농약이 전무한 상태에서 이러한 무공해 생물농약을 개발한 것은 생명공학분야에서도 획기적인 일이며, 이밖에도 서울대 연구팀과 항AIDS 제제 등을 공동으로 연구하고 있어 결과가 주목된다.

  • PDF

Further characterization of the causative virus of rabbit viral hepatitis, so-called rabbit haemorrhagic disease in Korea (국내에서 발생한 토끼 바이러스성 간염 소위 토끼 출혈병 바이러스의 성상)

  • Jyeong, Jong-sik;Jeong, Kyu-sik;Lee, Cha-soo;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.399-402
    • /
    • 1992
  • The causative virus causing rabbit hepatitis has been further characterized by evaluating viral proteins and viral nucleic acids of purified viruses from the liver of the experimentally infected rabbits. Rabbit hepatitis virus has one major structural protein of 54 kilodaltons and some minor proteins. Vrial RNA was resistant to DNAse I. The size of viral nucleic acid of this virus was calculated to be about 7.5 kilobases. These findings indicate that rabbit hepatitis virus belongs to the family Caliciviridae.

  • PDF

The N-terminal Region of the Porcine Epidemic Diarrhea Virus Spike Protein is Important for the Receptor Binding (PED 바이러스 Spike 단백질의 세포 수용체 결합 부위 확인)

  • Lee, Dong-Kyu;Cha, Se-Yeoun;Lee, Chang-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • Porcine epidemic diarrhea virus (PEDV) infection causes acute enteritis with lethal watery diarrhea resulting in a high mortality rate in piglets. As with the other members of group 1 coronaviruses, PEDV also utilizes the host aminopeptidase N (APN) as the major cellular receptor for entry into target cells. The coronavirus spike (S) protein is known to interact with the cellular surface for viral attachment and the S1 domain of all characterized coronaviruses contains a receptor-binding domain (RBD) that mediates a specific high-affinity interaction with their respective cellular receptors. Although the RBDs of several coronaviruses have been mapped, the location of the PEDV RBD has to date not been defined. As a first step toward the identification of the region of the S protein of the PEDV that is critical for recognition with the cellular receptor, we generated a series of S1-truncated variants and examined their abilities to bind to the porcine APN (pAPN) receptor. Our data indicate that the N-terminus of the S1 domain is required for pAPN association. The results from the present study may assist in our understanding of the molecular interactions between the PEDV S protein and the pAPN receptor.

tat, nef 결핍 AIDS 바이러스의 제조 및 특성 규명

  • 이안휘;성영철
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.277-277
    • /
    • 1994
  • Human immunodeficiency virus type (HIV-1 )은 복사에 필수적인 전사촉진단질유전자인 tat를 가지고 있다. 우리는 유전자 재조합기법을 사용하여 tat 유전자와 nef 유전자가 결핍된 HIV-1을 제조하였다. nef, tat-결핍 HIV-1 은 C $D_4$$^{+T}$ 세포에서 전혀 복제를 하지 못하였다. 반면, tat 단백질을 발현하도록 만들어진 재조합 Jurkat-tat세포에서는 복제능력을 다시 회복함을 알 수 있었다. 이러한 nef, tat-결핍 바이러스를 Jurkat-tat 세포에서 두달이상 계대배양했을 때, revertant가 전혀 생기지 않았다. 또한, nef, tat- 결핍 HIV-1 에 chloramphenicol acetyltransferase 유전자를 삽입시키고, 이의 발현정도를 측정함으로써 원형바이러스와 마찬가지로 민감하면서도 안전하고 편리하게 바이러스의 복제를 측정할 수 있었다. nef, tat- 결핍 바이러스는 항 HIV-1 제의 활성도를 측정하고자할 때 원형 바이러스의 대용으로 안전하게 사용될 수 있을것이다.다.

  • PDF

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation (C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제)

  • Kwak, Juri;Jang, Kyung Lib
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1007-1015
    • /
    • 2018
  • The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

Phospholipase D Activity is Elevated in Hepatitis C Virus Core Protein-Transformed NIH 3T3 Mouse Fibroblast Cells (C형 간염바이러스의 core 단백질에 의해 암화된 쥐의 섬유아세포에서 phospholipase D 효소활성의 증가)

  • Kim, Joonmo;Jung, Eun-Young;Jang, Kyung-Lib;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.551-558
    • /
    • 2003
  • Hepatitis C Virus (HCV) is associated with a severe liver disease and increased frequency in the development of hepatocellular carcinoma. Overexpression of HCV core protein is known to transform fibroblast cells. Phospholipase D (PLD) activity is commonly elevated in response to mitogenic signals, and PLD has been also reported to be overexpressed and hyperactivated in some human cancer. The aim of this study was to understand how PLD can be regulated in HCV core protein-transformed NIH3T3 mouse fibroblast cells. We observed that in unstimulated state, basal PLD activity was higher in NIH3T3 cells overexpressing HCV core protein than in vector-transfected cells. Although expression of PLD and protein kinase C (PKC) in core protein-transformed cells was similar with that of control cells, phorbol 12-myristate 13-acetate (PMA), which is known to activate PKC, stimulated significantly PLD activity in core protein-transformed cells, compared with that of the control cells. PLD activity assay using PKC isozyme-specific inhibitor, and PKC translocation experiment showed that PKC-$\delta$ was mainly involved in the PMA-induced PLD activation in the core-transformed cells. Taken together, these results suggest that PLD might be implicated in core protein-induced transformation.