Browse > Article
http://dx.doi.org/10.15324/kjcls.2020.52.4.297

Coronaviruses: SARS, MERS and COVID-19  

Kim, Eun-Joong (Department of Clinical Laboratory Science, Chungbuk Health & Science University)
Lee, Dongsup (Department of Clinical Laboratory Science, Hyejeon College)
Publication Information
Korean Journal of Clinical Laboratory Science / v.52, no.4, 2020 , pp. 297-309 More about this Journal
Abstract
Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.
Keywords
Coronavirus; COVID-19; MERS; SARS; Viral genome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Haake C, Cook S, Pusterla N, Murphy B. Coronavirus infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses. 2020;12:1023. https://doi.org/10.3390/v12091023   DOI
2 Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164. https://doi.org/10.1016/B978-0-12-385885-6.00009-2   DOI
3 Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(11 Suppl):223-227. https://doi.org/10.1097/01.inf.0000188166.17324.60
4 Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA. 2020;323:707-708. https://doi.org/10.1001/jama.2020.0757   DOI
5 Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. https://doi.org/10.1007/978-1-4939-2438-7_1   DOI
6 Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92: 418-423. https://doi.org/10.1002/jmv.25681   DOI
7 Chan KS, Zheng JP, Mok YW, Li YM, Liu YN, Chu CM, et al. SARS: prognosis, outcome and sequelae. Respirology. 2003;8(Suppl 1):36-40. https://doi.org/10.1046/j.1440-1843.2003.00522.x   DOI
8 Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349:2431-2441. https://doi.org/10.1056/NEJMra032498   DOI
9 Vijayanand P, Wilkins E, Woodhead M. Severe acute respiratory syndrome (SARS): a review. Clin Med (Lond). 2004;4:152-160. https://doi.org/10.7861/clinmedicine.4-2-152   DOI
10 de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523-534. https://doi.org/10.1038/nrmicro.2016.81   DOI
11 Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis. 2019;93:265-285. https://doi.org/10.1016/j.diagmicrobio.2018.10.011   DOI
12 Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23:130-137. https://doi.org/10.1111/resp.13196   DOI
13 Baghizadeh Fini M. What dentists need to know about COVID-19. Oral Oncol. 2020;105:104741. https://doi.org/10.1016/j.oraloncology.2020.104741   DOI
14 Mubarak A, Alturaiki W, Hemida MG. Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J Immunol Res. 2019:6491738. https://doi.org/10.1155/2019/6491738   DOI
15 Abdel-Moneim AS. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch Virol. 2014; 159:1575-1584. https://doi.org/10.1007/s00705-014-1995-5   DOI
16 Sifuentes-Rodriguez E, Palacios-Reyes D. COVID-19: the outbreak caused by a new coronavirus. Bol Med Hosp Infant Mex. 2020;77:47-53. https://doi.org/10.24875/BMHIM.20000039   DOI
17 Lotfi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254-266. https://doi.org/10.1016/j.cca.2020.05.044   DOI
18 Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288:192-206. https://doi.org/0.1111/joim.13091   DOI
19 Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22:19. https://doi.org/10.1186/s12575-020-00128-2   DOI
20 Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13:667-673. https://doi.org/10.1016/j.jiph.2020.03.019   DOI
21 Hou H, Wang T, Zhang B, Luo Y, Mao L, Wang F, et al. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin Transl Immunology. 2020;9:e01136. https://doi.org/10.1002/cti2.1136   DOI
22 Jacofsky D, Jacofsky EM, Jacofsky M. Understanding antibody testing for COVID-19. J Arthroplasty. 2020;35(7 Suppl):74-81. https://doi.org/10.1016/j.arth.2020.04.055   DOI
23 Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, et al. An overview of COVID-19. J Zhejiang Univ Sci B. 2020;21:343-360. https://doi.org/10.1631/jzus.B2000083   DOI
24 Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121:190-193. https://doi.org/10.3181/00379727-121-30734   DOI
25 Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86:3995-4008. https://doi.org/10.1128/JVI.06540-11   DOI
26 Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1-30. https://doi.org/10.1007/3-540-26765-4_1   DOI
27 Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-192. https://doi.org/10.1038/s41579-018-0118-9   DOI
28 Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A. 2004;101:6212-6216. https://doi.org/10.1073/pnas.0400762101   DOI
29 Bucknall RA, Kalica AR, Chanock RM. Intracellular development and mechanism of hemadsorption of a human coronavirus, OC43. Proc Soc Exp Biol Med. 1972;139:811-817. https://doi.org/10.3181/00379727-139-36243   DOI
30 Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:884-895. https://doi.org/10.1128/JVI.79.2.884-895.2005   DOI
31 Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967-1976. https://doi.org/10.1056/NEJMoa030747   DOI
32 Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16:69. https://doi.org/10.1186/s12985-019-1182-0   DOI
33 Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:237-261. https://doi.org/10.1146/annurev-virology-110615-042301   DOI
34 Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28:174-184.
35 Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011-1033. https://doi.org/10.3390/v4061011   DOI
36 Enjuanes L, Almazan F, Sola I, Zuniga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol. 2006;60:211-230. https://doi.org/10.1146/annurev.micro.60.080805.142157   DOI
37 Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao GF, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem. 2004;279:49414-49419. https://doi.org/10.1074/jbc.M408782200   DOI
38 Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82:11318- 11330. https://doi.org/10.1128/JVI.01052-08   DOI
39 van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3:e00473-12. https://doi.org/10.1128/mBio.00473-12   DOI
40 Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490-502. https://doi.org/10.1016/j.tim.2016.03.003   DOI
41 Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol. 2005;79:11892-11900. https://doi.org/10.1128/JVI.79.18.11892-11900.2005   DOI
42 Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic beta-coronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28:465-522. https://doi.org/10.1128/CMR.00102-14   DOI
43 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-273. https://doi.org/10.1038/s41586-020-2012-7   DOI
44 Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018;100: 163-188. https://doi.org/10.1016/bs.aivir.2018.01.001   DOI
45 Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virol J. 2015;12:221. https://doi.org/10.1186/s12985-015-0422-1   DOI
46 Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87:281-286. https://doi.org/10.1007/s12098-020-03263-6   DOI
47 Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0   DOI
48 Naserghandi A, Allameh SF, Saffarpour R. All about COVID-19 in brief. New Microbes New Infect. 2020;35:100678. https://doi.org/10.1016/j.nmni.2020.100678   DOI
49 Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97-109. https://doi.org/10.1016/j.antiviral.2014.06.013   DOI
50 Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11:41. https://doi.org/10.3390/v11010041   DOI
51 Müller MA, van der Hoek L, Voss D, Bader O, Lehmann D, Schulz AR, et al. Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein. Virol J. 2010;7:6. https://doi.org/10.1186/1743-422X-7-6   DOI
52 Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, et al. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B. 2020;10:1163-1174. https://doi.org/10.1016/j.apsb.2020.06.002   DOI
53 Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631-637. https://doi.org/10.1002/path.1570   DOI
54 Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol. 2005;287:31-55. https://doi.org/10.1007/3-540-26765-4_2   DOI
55 Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124:55-70. https://doi.org/10.1083/jcb.124.1.55   DOI
56 de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165-230. https://doi.org/10.1016/S0065-3527(05)64006-7   DOI
57 Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16:1686-1697. https://doi.org/10.7150/ijbs.45472   DOI
58 Guarner J. Three emerging coronaviruses in two decades. Am J Clin Pathol. 2020;153:420-421. https://doi.org/0.1093/ajcp/aqaa029   DOI
59 Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004;10:S88-97. https://doi.org/10.1038/nm1143   DOI
60 Yi Fan, Kai Zhao, Zheng-Li Shi, Peng Zhou. Bat coronaviruses in China. Viruses. 2019;2;11:210. https://doi.org/0.3390/v11030210   DOI