DOI QR코드

DOI QR Code

Coronaviruses: SARS, MERS and COVID-19

코로나바이러스: 사스, 메르스 그리고 코비드-19

  • Kim, Eun-Joong (Department of Clinical Laboratory Science, Chungbuk Health & Science University) ;
  • Lee, Dongsup (Department of Clinical Laboratory Science, Hyejeon College)
  • 김은중 (충북보건과학대학교 임상병리과) ;
  • 이동섭 (혜전대학교 임상병리과)
  • Received : 2020.11.09
  • Accepted : 2020.11.16
  • Published : 2020.12.31

Abstract

Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

코로나바이러스는 본래 자연동물숙주에 한정된 엔주틱 감염으로 발견되었으나, 이후 일부 종들은 동물-인간 종의 장벽을 넘어 인간에게 주노틱 감염을 확립하기 위해 진행되었다. 이에 따라 이종 간 장벽의 점프로 인해 사스-코로나바이러스, 메르스-코로나바이러스 그리고 사스- 코로나바이러스2 등의 치명적인 인간 바이러스로 나타났다. 코로나바이러스에는 스파이크, 막, 외피 그리고 뉴클레오캡시드 단백질의 4가지 주요 단백질이 함유되어 있다. 코로나바이러스의 복제 주기는 세포 이입, 게놈 번역, 복제, 조립 그리고 방출로 이어진다. 이들은 2002년 중국 광동성 사스-코로나바이러스가 발병하기 전까지 인간에게 고병원성으로 여겨지지 않았다. 그러나 2002년 중증 급성 호흡기 증후군이 세계적으로 8,422명이 발병하고, 치사율이 11%에 이르는 유행병으로 발생했다. 메르스 코로나바이러스는 낙타 코로나바이러스와 연관성이 높다. 2019년 12월 중국 우한에서 발생한 발병으로 2019-nCoV에 감염된 환자의 군집이 확인되었으며, 곧 전 세계로 확산되었다. 2019-nCoV는 호흡기를 통해 전파된 후 심할 경우 폐렴도 유발할 수 있다. 이 바이러스의 확인에는 감염자의 상기호흡기 표본 검체에 기초한 분자진단법이 사용되었다. 이 리뷰에서는 우리는 바이러스의 구조와 유전적 구성뿐 아니라 생명주기, 진단과 잠재적 치료법을 검토하였다.

Keywords

Acknowledgement

We thank Suyeon Kim, Haeyoon Lee, Yoonhee Cho, and Yoosol Yoon for drawing Figure 2.

References

  1. Yi Fan, Kai Zhao, Zheng-Li Shi, Peng Zhou. Bat coronaviruses in China. Viruses. 2019;2;11:210. https://doi.org/0.3390/v11030210 https://doi.org/10.3390/v11030210
  2. Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16:1686-1697. https://doi.org/10.7150/ijbs.45472
  3. Haake C, Cook S, Pusterla N, Murphy B. Coronavirus infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses. 2020;12:1023. https://doi.org/10.3390/v12091023
  4. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164. https://doi.org/10.1016/B978-0-12-385885-6.00009-2
  5. Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(11 Suppl):223-227. https://doi.org/10.1097/01.inf.0000188166.17324.60
  6. Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA. 2020;323:707-708. https://doi.org/10.1001/jama.2020.0757
  7. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. https://doi.org/10.1007/978-1-4939-2438-7_1
  8. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92: 418-423. https://doi.org/10.1002/jmv.25681
  9. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86:3995-4008. https://doi.org/10.1128/JVI.06540-11
  10. Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1-30. https://doi.org/10.1007/3-540-26765-4_1
  11. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-192. https://doi.org/10.1038/s41579-018-0118-9
  12. Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121:190-193. https://doi.org/10.3181/00379727-121-30734
  13. Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A. 2004;101:6212-6216. https://doi.org/10.1073/pnas.0400762101
  14. Bucknall RA, Kalica AR, Chanock RM. Intracellular development and mechanism of hemadsorption of a human coronavirus, OC43. Proc Soc Exp Biol Med. 1972;139:811-817. https://doi.org/10.3181/00379727-139-36243
  15. Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:884-895. https://doi.org/10.1128/JVI.79.2.884-895.2005
  16. Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967-1976. https://doi.org/10.1056/NEJMoa030747
  17. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic beta-coronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28:465-522. https://doi.org/10.1128/CMR.00102-14
  18. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-273. https://doi.org/10.1038/s41586-020-2012-7
  19. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018;100: 163-188. https://doi.org/10.1016/bs.aivir.2018.01.001
  20. Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol. 2005;79:11892-11900. https://doi.org/10.1128/JVI.79.18.11892-11900.2005
  21. Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virol J. 2015;12:221. https://doi.org/10.1186/s12985-015-0422-1
  22. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87:281-286. https://doi.org/10.1007/s12098-020-03263-6
  23. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0
  24. Naserghandi A, Allameh SF, Saffarpour R. All about COVID-19 in brief. New Microbes New Infect. 2020;35:100678. https://doi.org/10.1016/j.nmni.2020.100678
  25. Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11:41. https://doi.org/10.3390/v11010041
  26. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:237-261. https://doi.org/10.1146/annurev-virology-110615-042301
  27. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28:174-184.
  28. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011-1033. https://doi.org/10.3390/v4061011
  29. Enjuanes L, Almazan F, Sola I, Zuniga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol. 2006;60:211-230. https://doi.org/10.1146/annurev.micro.60.080805.142157
  30. Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao GF, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem. 2004;279:49414-49419. https://doi.org/10.1074/jbc.M408782200
  31. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16:69. https://doi.org/10.1186/s12985-019-1182-0
  32. Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82:11318- 11330. https://doi.org/10.1128/JVI.01052-08
  33. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3:e00473-12. https://doi.org/10.1128/mBio.00473-12
  34. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490-502. https://doi.org/10.1016/j.tim.2016.03.003
  35. Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97-109. https://doi.org/10.1016/j.antiviral.2014.06.013
  36. Müller MA, van der Hoek L, Voss D, Bader O, Lehmann D, Schulz AR, et al. Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein. Virol J. 2010;7:6. https://doi.org/10.1186/1743-422X-7-6
  37. Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, et al. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B. 2020;10:1163-1174. https://doi.org/10.1016/j.apsb.2020.06.002
  38. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631-637. https://doi.org/10.1002/path.1570
  39. Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol. 2005;287:31-55. https://doi.org/10.1007/3-540-26765-4_2
  40. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124:55-70. https://doi.org/10.1083/jcb.124.1.55
  41. de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165-230. https://doi.org/10.1016/S0065-3527(05)64006-7
  42. Guarner J. Three emerging coronaviruses in two decades. Am J Clin Pathol. 2020;153:420-421. https://doi.org/0.1093/ajcp/aqaa029 https://doi.org/10.1093/ajcp/aqaa029
  43. Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004;10:S88-97. https://doi.org/10.1038/nm1143
  44. Chan KS, Zheng JP, Mok YW, Li YM, Liu YN, Chu CM, et al. SARS: prognosis, outcome and sequelae. Respirology. 2003;8(Suppl 1):36-40. https://doi.org/10.1046/j.1440-1843.2003.00522.x
  45. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349:2431-2441. https://doi.org/10.1056/NEJMra032498
  46. Vijayanand P, Wilkins E, Woodhead M. Severe acute respiratory syndrome (SARS): a review. Clin Med (Lond). 2004;4:152-160. https://doi.org/10.7861/clinmedicine.4-2-152
  47. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523-534. https://doi.org/10.1038/nrmicro.2016.81
  48. Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis. 2019;93:265-285. https://doi.org/10.1016/j.diagmicrobio.2018.10.011
  49. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23:130-137. https://doi.org/10.1111/resp.13196
  50. Mubarak A, Alturaiki W, Hemida MG. Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J Immunol Res. 2019:6491738. https://doi.org/10.1155/2019/6491738
  51. Abdel-Moneim AS. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch Virol. 2014; 159:1575-1584. https://doi.org/10.1007/s00705-014-1995-5
  52. Sifuentes-Rodriguez E, Palacios-Reyes D. COVID-19: the outbreak caused by a new coronavirus. Bol Med Hosp Infant Mex. 2020;77:47-53. https://doi.org/10.24875/BMHIM.20000039
  53. Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, et al. An overview of COVID-19. J Zhejiang Univ Sci B. 2020;21:343-360. https://doi.org/10.1631/jzus.B2000083
  54. Lotfi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254-266. https://doi.org/10.1016/j.cca.2020.05.044
  55. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288:192-206. https://doi.org/0.1111/joim.13091 https://doi.org/10.1111/joim.13091
  56. Baghizadeh Fini M. What dentists need to know about COVID-19. Oral Oncol. 2020;105:104741. https://doi.org/10.1016/j.oraloncology.2020.104741
  57. Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22:19. https://doi.org/10.1186/s12575-020-00128-2
  58. Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13:667-673. https://doi.org/10.1016/j.jiph.2020.03.019
  59. Hou H, Wang T, Zhang B, Luo Y, Mao L, Wang F, et al. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin Transl Immunology. 2020;9:e01136. https://doi.org/10.1002/cti2.1136
  60. Jacofsky D, Jacofsky EM, Jacofsky M. Understanding antibody testing for COVID-19. J Arthroplasty. 2020;35(7 Suppl):74-81. https://doi.org/10.1016/j.arth.2020.04.055

Cited by

  1. Changes in Daily Life during the COVID-19 Pandemic among South Korean Older Adults with Chronic Diseases: A Qualitative Study vol.18, pp.13, 2020, https://doi.org/10.3390/ijerph18136781
  2. Comparative Analysis of News Big Data related to SARS-CoV, MERS-CoV, and SARS-CoV-2 (COVID-19) vol.26, pp.8, 2021, https://doi.org/10.9708/jksci.2021.26.08.091
  3. Coronavirus Disease 2019 Vaccination during Pregnancy vol.25, pp.4, 2021, https://doi.org/10.21896/jksmch.2021.25.4.231