DOI QR코드

DOI QR Code

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation

C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제

  • Kwak, Juri (Department of Microbiology, College of Natural Science, Pusan National University) ;
  • Jang, Kyung Lib (Department of Microbiology, College of Natural Science, Pusan National University)
  • 곽주리 (부산대학교 미생물학과) ;
  • 장경립 (부산대학교 미생물학과)
  • Received : 2018.06.05
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.

E6AP (E6-associated protein)는 C형 간염바이러스(hepatitis C virus, HCV)의 코어 단백질 유비퀴틴화와 프로테오좀 분해를 유도하여 캡시드 조립을 저해함으로써 HCV 복제를 억제하는 것으로 알려져 있다. 반면에 HCV 코어 단백질은 숙주의 항바이러스 방어계에 대항하고 자신의 유비퀴틴-의존적 프로테아좀 분해를 막기 위하여 DNA 메틸화를 통하여 E6AP 발현을 저해하는 전략을 진화과정에서 획득하였다. 본 연구에서는 HCV 코어 단백질이 E6AP 발현을 저해하는 기전을 밝혀내고자 하였다. HCV 코어 단백질은 HepG2 세포에서 DNA 메틸화 효소들인 DNMT1, 3a 및 3b의 단백질 수준과 효소 활성을 증가시켜 프로모터 과메틸화를 통하여 E6AP 발현을 저해하였지만 p53를 발현하지 않는 Hep3B 세포에서는 이러한 효과들이 관찰되지 않았다. 흥미롭게도 Hep3B 세포에 p53만 과발현시키면 HCV 코어 단백질이 없더라도 DNMT가 활성화되고 프로모터 과메틸화를 통하여 E6AP 발현이 저해되었다. 또한 p53 녹다운 및 과발현 실험을 통하여 p53 활성화가 HCV 코어 단백질의 효과에 필수적임을 알 수 있었다. 이로 인하여 Hep3B 보다 HepG2 세포에서 낮은 수준의 유비퀴틴화된 HCV 코어 단백질이 검출되었다. 따라서 HCV 코어 단백질은 p53-의존적으로 자신의 유비퀴틴-매개성 프로테아좀 분해를 저해한다.

Keywords

References

  1. Alter, M. J. 1997. Epidemiology of hepatitis C. Hepatology 26, 62S-65S. https://doi.org/10.1002/hep.510260711
  2. Arora, P., Kim, E. O., Jung, J. K. and Jang, K. L. 2008. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 261, 244-252. https://doi.org/10.1016/j.canlet.2007.11.033
  3. Bestor, T. H. 2000. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395-2402. https://doi.org/10.1093/hmg/9.16.2395
  4. Caselmann, W. H. and Alt, M. 1996. Hepatitis C virus infection as a major risk factor for hepatocellular carcinoma. J. Hepatol. 24, 61-66.
  5. Esteve, P. O., Chin, H. G. and Pradhan, S. 2005. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc. Natl. Acad. Sci. USA. 102, 1000-1005. https://doi.org/10.1073/pnas.0407729102
  6. Glickman, M. H. and Ciechanover, A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373-428. https://doi.org/10.1152/physrev.00027.2001
  7. Haqshenas, G. 2013. The p7 protein of hepatitis C virus is degraded via the proteasome-dependent pathway. Virus Res. 176, 211-215. https://doi.org/10.1016/j.virusres.2013.06.009
  8. Hou, W., Tian, Q., Zheng, J. and Bonkovsky, H. L. 2010. Zinc mesoporphyrin induces rapid proteasomal degradation of hepatitis C nonstructural 5A protein in human hepatoma cells. Gastroenterology 138, 1909-1919. https://doi.org/10.1053/j.gastro.2009.11.001
  9. Koike, K. 2007. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J. Gastroenterol. Hepatol. 22 Suppl 1, S108-111. https://doi.org/10.1111/j.1440-1746.2006.04669.x
  10. Kwak, J., Shim, J. H., Tiwari, I. and Jang, K. L. 2016. Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation. Cancer Lett. 380, 59-68. https://doi.org/10.1016/j.canlet.2016.06.008
  11. Kwak, J., Tiwari, I. and Jang, K. L. 2016. Hepatitis C virus Core activates proteasomal activator 28 gamma expression via upregulation of p53 levels to control virus propagation. J. Gen. Virol. 98, 56-67.
  12. Lecker, S. H., Goldberg, A. L. and Mitch, W. E. 2006. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807-1819. https://doi.org/10.1681/ASN.2006010083
  13. Liang, T. J. and Heller, T. 2004. Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 127, S62-71. https://doi.org/10.1053/j.gastro.2004.09.017
  14. Lim, J. S., Park, S. H. and Jang, K. L. 2012. Hepatitis C virus Core protein overcomes stress-induced premature senescence by down-regulating p16 expression via DNA methylation. Cancer Lett. 321, 154-161. https://doi.org/10.1016/j.canlet.2012.01.044
  15. Lin, R. K. and Wang, Y. C. 2014. Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci. 4, 46. https://doi.org/10.1186/2045-3701-4-46
  16. Lu, W., Lo, S. Y., Chen, M., Wu, K., Fung, Y. K. and Ou, J. H. 1999. Activation of p53 tumor suppressor by hepatitis C virus core protein. Virology 264, 134-141. https://doi.org/10.1006/viro.1999.9979
  17. Moriishi, K., Okabayashi, T., Nakai, K., Moriya, K., Koike, K., Murata, S., Chiba, T., Tanaka, K., Suzuki, R., Suzuki, T., Miyamura, T. and Matsuura, Y. 2003. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J. Virol. 77, 10237-10249. https://doi.org/10.1128/JVI.77.19.10237-10249.2003
  18. Park, J. and Jang, K. L. 2014. Hepatitis C virus represses E-cadherin expression via DNA methylation to induce epithelial to mesenchymal transition in human hepatocytes. Biochem. Biophys. Res. Commun. 446, 561-567. https://doi.org/10.1016/j.bbrc.2014.03.009
  19. Park, S. H., Lim, J. S., Lim, S. Y., Tiwari, I. and Jang, K. L. 2011. Hepatitis C virus Core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Lett. 310, 61-68.
  20. Robertson, K. D. and Jones, P. A. 1998. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457-6473. https://doi.org/10.1128/MCB.18.11.6457
  21. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. and Howley, P. M. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495-505. https://doi.org/10.1016/0092-8674(93)90384-3
  22. Scherer, S. J., Maier, S. M., Seifert, M., Hanselmann, R. G., Zang, K. D., Muller-Hermelink, H. K., Angel, P., Welter, C. and Schartl, M. p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J. Biol. Chem. 275, 37469-37473. https://doi.org/10.1074/jbc.M006990200
  23. Seo, Y. L., Heo, S. and Jang, K. L. 2015. Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. J. Gen. Virol. 96, 822-832. https://doi.org/10.1099/vir.0.000032
  24. Shaulian, E. and Karin, M. 2001. AP-1 in cell proliferation and survival. Oncogene 20, 2390-2400. https://doi.org/10.1038/sj.onc.1204383
  25. Shirakura, M., Murakami, K., Ichimura, T., Suzuki, R., Shimoji, T., Fukuda, K., Abe, K., Sato, S., Fukasawa, M., Yamakawa, Y., Nishijima, M., Moriishi, K., Matsuura, Y., Wakita, T., Suzuki, T., Howley, P.M., Miyamura, T. and Shoji, I. 2007. E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J. Virol. 81, 1174-1185. https://doi.org/10.1128/JVI.01684-06
  26. Shoji, I. 2012. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World J. Virol. 1, 44-50. https://doi.org/10.5501/wjv.v1.i2.44
  27. Suzuki, R., Moriishi, K., Fukuda, K., Shirakura, M., Ishii, K., Shoji, I., Wakita, T., Miyamura, T., Matsuura, Y. and Suzuki, T. 2009. Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism. J. Virol. 83, 2389-2392. https://doi.org/10.1128/JVI.01690-08
  28. Suzuki, T. Aizaki, H. Murakami, K. Shoji, I. and Wakita, T. 2007. Molecular biology of hepatitis C virus. J. Gastroenterol. 42, 411-423. https://doi.org/10.1007/s00535-007-2030-3
  29. Wang Y. A., Kamarova, Y. Shen, K. C. Jiang, Z. Hahn, M. J. Wang, Y. and Brooks, S. C. 2005. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol. Ther. 4, 1138-1143. https://doi.org/10.4161/cbt.4.10.2073