• Title/Summary/Keyword: 바디 네트워크

Search Result 11, Processing Time 0.03 seconds

Energy Management Method Depending on Diverse Channel Conditions In Wireless Body Sensor Networks (바디 센서 네트워크에 존재하는 다양한 채널 상태에 따른 에너지 효율적인 디바이스 전력 관리 기법)

  • Hong, Jina;Lee, Woosik;kim, Namgi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.64-67
    • /
    • 2013
  • 바디 센서 네트워크 환경에 존재하는 다양한 종류의 디바이스는 매우 작은 배터리 기반으로 작동을 한다. 특히 기존에 존재하였던 센서 네트워크 환경보다 바디 센서 네트워크 환경이 자원이 매우 제한적이기 때문에 디바이스의 전력 관리가 매우 중요하다고 할 수 있다. 하지만 바디 센서 네트워크는 사람의 움직임 또는 센서의 위치와 같은 고유의 특징을 가지고 있기 때문에 바디 센서 네트워크를 구축하기 위해서 고유의 특징을 고려해야만 한다. 본 논문에서는 바디 센서 네트워크 환경에 존재하는 다양한 제약사항을 분석하며, 대표적인 전송 전력 관리 기법에 따른 에너지 효율적인 측면을 고려한 분석을 한다. 또한 분석된 결과를 통해 바디 센서 네트워크 환경에서 에너지 효율적인 대안을 제시하고자 한다.

Networked Fuzzy Control for Wave Energy Converter System (웨이브 에너지 발전 시스템의 네트워크 퍼지 제어)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1866-1867
    • /
    • 2011
  • 본 논문은 웨이브 에너지 발전 시스템의 네트워크제어기 설계에 대해서 논의한다. 기계적인 오실레이터의 움직임 운동 방정식의 해를 구하면서, 시스템의 에너지 손실의 효율성을 향상 시키기 위하여 퍼지 제어 기법을 도입한다, 다양한 초기 조건에서의 바디의 움직임 방정식의 해를 수치적으로 해석하기위하여, 손실되는 에너지의 크기는 알 수 있다고 가정한다. 네트워크상에서 발생하는 시간 지연을 모델링하며, 전체 웨이브 에너지 발전 시스템은 시간 지연을 가지는 웨이브 에너지 네트워크 제어 시스템이 된다. 제안하는 퍼지 제어기와 웨이브 에너지 발전시스템은 같은 퍼지 멤버쉽 함수를 가지게 모델링한다. 전체 네트워크 폐루프 시스템의 안정도를 분석하고, 웨이브 에너지 발전시스템을 안정화 시키는 퍼지 제어기 설계를 위한 충분조건을 유도한다. 시간 지연을 가지는 네트워크에서 퍼지 제어 기법을 이용하여 웨이브 에너지 시스템의 에너지 손실을 파악한다.

  • PDF

Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks (의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구)

  • Seo, Jae-Won;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.285-298
    • /
    • 2009
  • According to the development of ubiquitous technologies, sensor networks is used in various area. In particular, medical field is one of the significant application areas using sensor networks, and recently it has come to be more important according to standardization of the body sensor networks technology. There are special characteristics of their own for medical sensor networks, which are different from the one of sensor networks for general application or environment. In this paper, we propose a hierarchical medical sensor networks structure considering own properties of medical applications, and also introduce transmission mechanism based on hierarchical structure. Our mechanism uses the priority and threshold value for medical sensor nodes considering patient's needs and health condition. Through this way Cluster head can transmit emergency data to the Base station rapidly. We also present the new key establishment mechanism based on key management mechanism which is proposed by L. Eschenauer and V. Gligor for our proposed structure and transmission mechanism. We use key provisioning for emergency nodes that have high priority based on patients' health condition. This mechanism guarantees the emergency nodes to establish the key and transmit the urgent message to the new cluster head more rapidly through preparing key establishment with key provisioning. We analyze the efficiency of our mechanism through comparing the amount of traffic and energy consumption with analysis and simulation with QualNet simulator. We also implemented our key management mechanism on TmoteSKY sensor board using TinyOS 2.0 and through this experiments we proved that the new mechanism could be actually utilized in network design.

Implementation of Wireless Micro-Magnetic Detection System in the Conveyer Belt (컨베어 이송장치에서의 무선 미소자기감지 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2975-2981
    • /
    • 2014
  • Micro-magnetic detection system is used to detect small particles in an automatic transmission valve body, which signal noise and time-delay may occurs in process of signal transmitting and filtering. In this paper, we present the design and implement of a micro-magnetic detection system based on wireless sensor networks in conveyer belt. Micro-magnetic detection system consists of five modules which are magnetic sensor detector, signal processing unit, wireless sensor networks, system control unit and system monitoring unit. Our experimental results show that the proposed wireless micro-magnetic detection system improves both accuracy and time delay compared to the wired system; therefore, it may apply for wireless micro-magnetic detection system by analysis of packet reception rate.

Implementation of micro-magnetic detection system based on wireless sensor networks (무선센서네트워크 기반의 미소자기감지 시스템 개발)

  • Lee, Young-Dong;Park, Jong-Hun;Kang, Hag-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.402-403
    • /
    • 2014
  • Micro-magnetic detection system is used to detect small particles in an automatic transmission valve body, which signal noise and time-delay may occurs in process of signal transmitting and filtering. In this paper, we present the design and implement of a micro-magnetic detection system based on wireless sensor networks. Micro-magnetic detection system consists of five modules which are magnetic sensor detector, signal processing unit, wireless sensor networks, system control unit and system monitoring unit. The experimental results show that signal noise and time-delay decreased.

  • PDF

u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors (u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.433-441
    • /
    • 2007
  • The bio-Sensors, which are sensing the vital signs of human bodies, are largely used by the medical equipment. Recently, the sensor network technology, which composes of the sensor interface for small-seize hardware, processor, the wireless communication module and battery in small sized hardware, has been extended to the area of bio-senor network systems due to the advances of the MEMS technology. In this paper we have suggested a design and implementation of a health care information system(called u-EMS) using a bio-sensor network technology that is a combination of the bio-sensor and the sensor network technology. In proposed system, we have used the following vital body sensors such as EKG sensor, the blood pressure sensor, the heart rate sensor, the pulse oximeter sensor and the glucose sensor. We have collected various vital sign data through the sensor network module and processed the data to implement a health care measurement system. Such measured data can be displayed by the wireless terminal(PDA, Cell phone) and the digital-frame display device. Finally, we have conducted a series of tests which considered both patient's vital sign and context-awared information in order to improve the effectiveness of the u-EMS.

A Design for Medical Information System of Emergency Situation Prediction using Body Signal (생체신호를 이용한 응급상황 예측 의료정보 시스템의 설계)

  • Park, Sun;Kim, Chul Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.4
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, we proposes a emergency medical information system for predicting emergency situation by using the body's vital signs. Main research of existing emergency system has focused on body sensor networks. The problem of these studies have a delay of the emergency first aid since occurring of an emergency situation send a message of emergency situation to user. In the serious situation, patients of these problem can lead to death. To solve this problem, it need to the prediction of emergency situation for doing quickly the First Aid with identify signs of a pre-emergency situations until an emergency occurs. In this paper, the sensor network technology, the security technology, the internet information retrieval techniques, data mining technology, and medical information are studied for the convergence of medical information systems of the prediction of emergency situations.

  • PDF

Design of Sensor Network for Estimation of the Shape of Flexible Endoscope (연성 대장내시경의 형상추정을 위한 센서네트워크의 설계)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a method of shape prediction of an endoscope handling robot that can imitate a surgeon's behavior using a sensor network is suggested. Unit sensors, which are composed of a 3-axis magnetometer and 3-axis accelerometer pair comprise the network through CAN bus communication. Each unit of the sensor is used to detect the angle of the points in the longitudinal direction of the robot, which is made from a flexible tube. The signals received from the sensor network were filtered using a low pass Butterworth filter. Here, a Butterworth filter was designed for noise removal. Finally, the Euler angles were extracted from the signals, in which the noise was filtered by the low path Butterworth filter. Using this Euler angle, the position of each sensor on the sensor network is estimated. The robot body was assumed to consist of links and joints. The position of each sensor can be assumed to be attached to the center of each link. The position of each link was determined using the Euler angle and kinematics equation. The interpolation was carried out between the positions of the sensors to be able to connect each point smoothly and obtain the final posture of the endoscope in operation. The experimental results showed that the shape of the colonoscope can be visualized using the Euler angles evaluated from the sensor network suggested and the shape of serial link estimated from the kinematics chain model.

SoFA: A Distributed File System for Search-Oriented Systems (SoFA: 검색 지향 시스템을 위한 분산 파일 시스템)

  • Choi, Eun-Mi;Tran, Doan Thanh;Upadhyaya, Bipin;Azimov, Fahriddin;Luu, Hoang Long;Truong, Phuong;Kim, Sang-Bum;Kim, Pil-Sung
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.229-239
    • /
    • 2008
  • A Distributed File System (DFS) provides a mechanism in which a file can be stored across several physical computer nodes ensuring replication transparency and failure transparency. Applications that process large volumes of data (such as, search engines, grid computing applications, data mining applications, etc.) require a backend infrastructure for storing data. And the distributed file system is the central component for such storing data infrastructure. There have been many projects focused on network computing that have designed and implemented distributed file systems with a variety of architectures and functionalities. In this paper, we describe a complete distributed file system which can be used in large-scale search-oriented systems.

  • PDF