
제 권 제 호 년 월17 4 2008 12 229

1. Introduction

Permanent Storage is a fundamental abstraction in

computing. A permanent storage consists of a named set
of objects that come into existence by explicit creation.
The naming structure, the characteristics of the objects,
and the set of operations associated with them char-
acterize a specific refinement of the basic abstraction.
A file system is one such refinement. A file system is
organized as a hierarchical directory of files, and files
are variable-length arrays of bytes. These elements (di-
rectories and files) are directly exposed to file system
clients; clients are responsible for logically structuring
their application data in terms of directories, files, and
bytes inside those files.

SoFA: A Distributed File System for

Search-Oriented Systems

Eunmi Choi1† ･ Tran, Doan Thanh1 ･ Bipin Upadhyaya1 ･ Fahriddin Azimov1 ･
Luu, Hoang Long1 ･ Truong, Phuong1 ･ SangBum Kim2 ･ Pilsung Kim2

검색 지향 시스템을 위한 분산 파일 시스템SoFA:

최은미 ･쩐도안타인 ･비핀 우바디야 ･파흐릇딘 아지모프 ･루왕용 ･장옥향 ･김상범 ･김필성

ABSTRACT

A Distributed File System (DFS) provides a mechanism in which a file can be stored across several physical
computer nodes ensuring replication transparency and failure transparency. Applications that process large volumes
of data (such as, search engines, grid computing applications, data mining applications, etc.) require a backend
infrastructure for storing data. And the distributed file system is the central component for such storing data
infrastructure. There have been many projects focused on network computing that have designed and implemented
distributed file systems with a variety of architectures and functionalities. In this paper, we describe a complete
distributed file system which can be used in large-scale search-oriented systems.

Key words : Distributed file system, Search-Oriented system

요 약

분산파일시스템 은분산환경에서장애와사본에대한투명성을보장하며파일을다수의물리적인컴퓨터노드들에(DFS)
게저장할수있는메카니즘을제공한다 검색엔진 그리드컴퓨팅 데이터마이닝어플리케이션등과같이많은양의데이터를. , ,
처리하는어플리케이션들은데이터저장을위한백엔드인프라구조를제공할필요가있다 분산파일시스템은이러한저장.
데이터기반을위한주요구성요소가된다 많은프로젝트의관심사가되는네트워크컴퓨팅은이와같이설계및구현된분산.
파일시스템을갖추고있으며 다양한아키텍처와기능들을시스템의특성에따라서제공하고있다 이논문에서는대용량의, .
검색 지향적인 시스템에서 사용되는 분산 파일 시스템 메카니즘들과 성능들을 소개한다SOFA , .

주요어 분산 파일 시스템: , Search-Oriented system

* This research was supported by the SKT research project,
the research program in Kookmin University, and partially
the MKE under the ITRC support program (IITA-2008-
C1090-0804-0015).
년 월 일 접수 년 월 일 채택2008 11 17 , 2008 12 6

1)
국민대학교 비즈니스 학부IT

2) SK Telecom Convergence and Internet R&D Center
주 저 자 : 최은미Eunmi Choi ()
교신저자 : 최은미Eunmi Choi ()
E-mail: emchoi@kookmin.ac.kr

Vol. 17, No. 4, pp. 229-239 (2008. 12)
한국시뮬레이션학회 논문지

Eunmi Choi Tran, Doan Thanh Bipin Upadhyaya Fahriddin Azimov Luu, Hoang Long Truong, Phuong SangBum Kim Pilsung Kim･ ･ ･ ･ ･ ･ ･

230 한국시뮬레이션학회 논문지

A DFS is used to build a hierarchical view of mul-
tiple file servers and shared on the network. Instead of
having to think of a specific machine name for each set
of files, the user will only have to remember one name;
which will be the ‘key’ to a list of shares found on mul-
tiple servers on the network as shown in figure 1. There
are some features that should be considered to build a
DFS such as: the architecture of a DFS, the communica-
tion technology, the naming and synchronization mecha-
nism, data consistency, fault-tolerance and security. Even
though considering these features, many DFS’s have been
developed over the years and almost two decades of re-
search have not succeeded in producing a fully-featured
DFS [11,12,15].
In this paper, we describe about the structure of a DFS

which is composed by many prominent features. There
are many kinds of architecture for a DFS, such as: Cli-
ent-Server Architectures, Cluster-Based Distributed File
System, Symmetric Architecture (based on peer-to-peer
technology), Asymmetric Architecture, and Parallel Archi-
tecture. We choose the Cluster-Based Distributed File
System Architecture to implement because of its sim-
plicity, scalability, reliability, and high-perfomance thr-
ough single master controlling hundreds of chunk serv-
ers. For communication, we use Remote Procedure Call
method to communicate as they make the system in-

dependent from underlying operating systems, networks
and transport protocols. In a DFS, it is very important
that each object has an associated logical path name
and physical address. To achieve this naming capability,
we use AVL tree data structure [2,3] for mapping of the
file system abstraction onto physical storage media and
keeping the transparency to the user. Finally, to integrate
consistency and fault-tolerance into this system, we use
Caching and Replication mechanism [10,13].
Based on those characteristics, we propose a number

of DFS mechanisms and performance issues. In Cluster
-based architecture, in order to manage the naming sys-
tem we provide a metadata handling mechanism to op-
timize the performance of the metadata handling process
by combining tree-based data structure and self-balancing
data structure. The key improvment is our new metadata
indexing mechanism having the better performance com-
paring to normal tree-based data structure used in HDFS [17]

and faster performance of metadata processes comparing
to B-tree implementation in GFS [18]. For synchronization
issue, to provide a consistent and reliable Metadata Man-
agement System and support the persistency of cache
in the client side, we employ Branch locking mechanism
and leasing mechanism for access control of data objects.
For Replication and Consistency, similar to Google File
System (GFS) [18] and Hadoop [17], we use a pipeline rep-
lication mechanism with minor modification comparing
to GFS in order to provide consistency among repli-
cations. In this mechanism, we employ passive replication
method to transparently replicate data to multiple replica
servers to reduce communication overhead between the
client side and SoFA. Besides, we implement a persistent
cache at client side ensuring Time-constraint Relaxing
Data Storage.
The structure of the paper is as follows. Sections 2

cover related works in Distributed File Systems. In section
3, the system architecture of our application is presented.
In Section 4 we showed Storing & Retrieving Mech-
anisms. In Section 5, Data Replication & Consistency
for Search-Oriented System are presented and in Section
6 experimental results is outlined. We conclude our paper
in section 7.

Fig. 1. Distributed File System Overview

SoFA: A Distributed File System for Search-Oriented Systems

제 권 제 호 년 월17 4 2008 12 231

2. Related Work

First issue considered important to a DFS is the types
of DFS architectures. Different DFS Architectures exists
such as Client-Server Architectures (e.g. Sun Microsys-
tem’s Network File System (NFS) [16]) which provides
a standardized view of its local file system. Advantage
of this scheme is that it is largely independent of local
file systems. Another type of Architecture is Cluster-
Based Distributed File System such as GFS. It consists
of a Single master along with multiple chunk servers
and divided into chunks of 64 Mbytes each. The ad-
vantage is its simplicity and it allows single master to
control a few hundred chunk servers. Third type of
architecture is Symmetric Architecture that is based on
peer-to-peer technology. It uses a DHT based system for
distributing data, combined with a key based lookup
mechanism. In contrast, an Asymmetric Architecture file
system is a file system in which there are one or more
dedicated metadata managers that maintain the file sys-
tem and its associated disk structures. Examples include
Panasas ActiveScale [21], Lustre [19] and NFS file systems.
Finally, a Parallel Architecture file system is one in which
data blocks are striped, in parallel, across multiple storage
devices on multiple storage servers. Support for parallel
applications is provided allowing all nodes access to
the same files at the same time, thus providing concurrent
read and write capabilities. An important note is that all
of the above definitions overlap. Based on the architecture
types provided by literature, we follow the implemen-
tation of the Cluster-Based Distributed File System
with asymmetric and parallel architecture.
Next important issue is considered when implementing

a DFS is the Naming mechanism. It plays an important
role as each object has an associated logical path name
and physical address. Its fundamental idea is to provide
its clients complete transparent access to a remote file
system. The currently common approach employs a
central metadata server to manage file name space such
as GFS, Hadoop, Lustre, Panasas, KFS [20]. Therefore de-
coupling metadata and data improve the file namespace
throughput and relief the synchronization problem. An-
other approach is metadata distributed in all nodes re-

sulting in all nodes understanding the disk structure.
This approach is employed in Parallel Virtual File System
(PVFS2) [22] and Red Hat Global File System (RGFS) [23].
But serious implication is users do not share name spaces
due to security issues. It makes file sharing harder. Our
approach is utilizing central metadata server to manage
the naming system with important improvement to op-
timize the performance of the metadata handling process
by combining tree-based data structure and self-balancing
data structure. With this feature, we can overcome the
linear searching in normal data structure as well as im-
proving the performance in backup of the metadata infor-
mation.
The last important issue in a DFS is Consistency and

Replication. To provide the consistency, most of DFS
employ checksum to validate the data after sending
through communication network. Besides, Caching and
Replication play an important role in DFS, most notable
when they are designed to operate over wide-area net-
work. It can be done in quite few ways such as Client
-side caching and Server-Side replication. There are two
types of data need to be considered for replication:
metadata replication and data object replication. Metadata
is the most important part of the whole DFS. Thus, all
DFS provide a mechanism to ensure the availability
and recoverability of this data such as backup metadata
server and snapshot of metadata with transaction logs.
For data objects, there are different approaches depen-
ding on the purpose of applications. DFSs like Lustre
and Panasas assume that data object is available as long
as the physical devices are available. Hence, they con-
sider a physical failure as an exception and the object
data can be lost. In case of other DFSs like GFS and
Hadoop, their applications require the availability of data
as the critical condition and failure will be the norm
rather than the exception. Thus, data objects are rep-
licated in different servers. This high bandwidth con-
suming feature leads to the asynchronous replication
method named “Replication in pipeline” which is em-
ployed in GFS and Hadoop. Similar to GFS and Haddop,
we use a pipeline replication mechanism. In this mech-
anism, we employ passive replication method to trans-
parently replicate data to multiple replica servers to

Eunmi Choi Tran, Doan Thanh Bipin Upadhyaya Fahriddin Azimov Luu, Hoang Long Truong, Phuong SangBum Kim Pilsung Kim･ ･ ･ ･ ･ ･ ･

232 한국시뮬레이션학회 논문지

reduce communication overhead between the client side
and SoFA. Besides, we implement a persistent cache at
client side ensuring Time-constraint Relaxing Data Storage.

3. System Architecture

Our Distributed System is mainly targeted to large
Search-Oriented Systems. This section presents the overall
architecture mainly focuses on DFS for Search-Oriented
systems.

3.1 Overall Search-oriented SystemArchitecture
The following figure shows the system overview of

our search system. The architecture includes Web Server,
Delegator, Cache Server, DFS [3,4], Integrated Search
Component Server and Management Station.
A user sends search queries to the Web Server. And

these queries are passed to Cache Server. The Cache
Server contains caching system of frequently searched
contents. We have number of Cache Servers to maintain
our search system without performance bottlenecks. The
Cache Server activates operation of Delegator when it
does not contain the searched contents in the caching
system. Delegator invokes an ISC (Integrated Searching
Component) Server. After generating search contents,
we store Cached data of searched results into Distributed
File System servers (DFS).
The DFS [1,9,12,14] provides fast access to files which

located distributively in the network. Files are separated

into chunks and locate in different chunk servers. Each
chunk has its replication in other servers. This will pro-
vide data reliability in our system. DFS has been designed
for Search-Oriented applications that process large vol-
umes of data (such as: search engines, grid computing
applications, data mining applications, etc.) require a
backend infrastructure for storing data. Such infrastructure
is required to support applications whose workload could
be characterized as: primarily write-once/read- many
workloads. We develop the DFS as a high performance
distributed file system to meet this infrastructure need.
The Cluster Management station takes care of manag-

ing the whole system servers. The administrator through
Cluster management can see the current status of the
servers, control their balance, deploy or update applica-
tions, define unavailable servers and so on. Cluster man-
agement station observes processes search systems and
status of system components.
ISC Servers are main sub-components for search query.

In ISC Servers there are stored indexed documents of
different category which retrieved from Crawler. Each
ISC server deals with Delegator by getting query and
returning search result.

3.2 Search-Oriented File System

Architecture (SOFA)
We followed the implementation of the Cluster-Based

Distributed File System with asymmetric and parallel

Fig. 2. Overall System Architecture
Fig. 3. The overall flows of communication between FS

Client, Master and Chunk Server

SoFA: A Distributed File System for Search-Oriented Systems

제 권 제 호 년 월17 4 2008 12 233

architecture. It consists of three major components: File
System (FS) Client, FS Master Server and FS Chunkserver
that construct our DFS. We assume that the DFS will
run on homogeneous computers. The brief description
of each component is as follows.
FS Master Server: FS Master Server maintains all

file system metadata that includes the file and chunk
namespace, access control information, the mapping
from files to chunks, and the current locations of
chunks.
FS Client: FS Client is the host for applications

running on DFS and it interacts with the FS Master
Server for metadata operations, but all data-bearing
communication goes directly to the Chunkserver. It
sends a request to one of the replicas, most likely the
closest one. FS Clients never read and write file data
through the Master Server, instead it asks the FS Master
Server which Chunkserver it should connect. It caches
this information for a limited time and interacts with
the Chunkserver directly for subsequent operations.
Chunkserver: Chunkserver store chunks on local disks

as Linux files. Read or write chunk data specified by
a chunk handle and a byte range. Files are divided into
fixed-size chunks (64 MB), each chunk is identified by
an immutable and globally unique 64 bit chunk handle.
Chunk is replicated on multiple Chunkservers on different
groups of computers.

4. Storing And Retrieving Mechanism

In this section, we describe the storing and retrieving
mechanisms and related structures.

4.1 Indexing Structure for Mapping
There are different data structures for storing metadata

of files such as array, list or tree. Array and List are very
popular because they can give a visual vision about
storing mechanism and very easy to implement. However,
one considerable disadvantage of arrays and lists is
inefficient time in searching. Using arrays and lists can
take long time for searching because of linear traversal.
Therefore, considering the most appropriate mechanism
to deal with the demands for short time searching, tree

data structure is more appropriate than others.
After making comparison (results are shown in section

6.1), we see that AVL tree has higher performance than
other trees (such as: 2-3-4 tree [5,6] and Red-Black tree [7]).
From these results, we decide to use AVL tree data
structure for storing File Namespace in our Distributed
System.
The AVL tree is a binary search tree that rearranges

its nodes whenever it becomes unbalanced. A node in
an AVL tree has only two child-nodes and each node
contains the balance factor where the factor of a node
is the difference between the height of its right sub-tree
and the height of its left sub-tree. This factor is used
to make decision to rotate tree whenever the tree is
unbalanced as a result we obtain a balanced tree. In an
AVL tree, the heights of the two child subtrees of any
node differ by at most one; therefore, it is also said to
be height-balanced. An imbalance at a node of an AVL
tree can be corrected by a single rotation or a double
rotation. Figure 4 shows an example of AVL tree. In
this example, we construct an AVL tree from a list of

An example of AVL tree data structure

h1

h4

h2 h3

h5 h6 h7

h9h8 h10

Study

My staff

RelaxWork

Foo.txt mapping

mapping

mapping

mapping

Fig. 5. An Using AVL tree for storing File Namespace.
Mapping between Organizing Structure (left) and
Performance-oriented Structure (right)

Eunmi Choi Tran, Doan Thanh Bipin Upadhyaya Fahriddin Azimov Luu, Hoang Long Truong, Phuong SangBum Kim Pilsung Kim･ ･ ･ ･ ･ ･ ･

234 한국시뮬레이션학회 논문지

input files. With each file’s path, we generate a keyword
according to that file’s path and this keyword will be
used to insert into an AVL tree. Each node, hence,
contains a keyword, a file’s path and two pointers for
two child nodes.
As a result, an approach using a mechanism to

mapping the File Namespace with nodes of a tree to
solve this problem is proposed as in Figure 5.
By combining tree-based data structure and self-

balancing data structure, we can overcome the linear
searching which results in the complexity of O(n) as in
normal data structure with the searching complexity of
O(log n), where n is the number of elements in the
tree. Section 6 in this paper presents a state-of-the-art
investigation on tree data structures and compares the
pertinent characteristics of B, Red-Black and AVL trees
in the context of DFS with large scale data. Our exper-
iments and analysis show that neither data structure
totally dominates the other. The decision as to which is
performance-wise efficient is a function of the appli-
cation.

4.2 Caching Mechanism
One of the concerns for our system was the memory

of the master server. The master server maintains about
64 bytes of each 64 MB chunk. The number of requests
the masters gets from FS Client about the chunk local
can be one of the bottleneck of the system. The FS
client caches the result it retrieved from master server
for future use.
We employ a symmetric design for persistent cache

at client side of SoFA ensuring Time-constraint Relaxing
Data Storage. In this design, we add an In Memory File
System (IMFS) to the client side to provide applica-
tions use an Interface to interact with the SoFA.
Metadata operations are executed on IMFS, then through
a RPC, they transparently executed to Metadata Server.
Data operations are executed on IMFS. Normal data are
buffered in IMFS and are transferred to Data Object
Servers when buffers are full or their lease is near to
end. IMFS automatically revokes Locks and Leases when
they are time-out or revoked by the Master Server.

4.3 Fragmentation Control Mechanism
The chunks are stored in local file system of chunk

servers in DFS. We have fixed of chunks size to be 64
MB. So irrespective to the size of actual chunk we are
writing we allocate each chunk a 64 MB size. This
gives each file a continuous space in the disk for the
files to be stored which reduces seek and latency time
of disk.
When a file is deleted by a user or an application,

it is not immediately removed from DFS. Instead, in
our DFS, the chunks corresponding to the file is marked
the deleted. The file can be restored quickly as long as
it the space is not reclaimed by other chunks. The time
when the chunk can be used by other chunks can be
configured. The deletion of a file causes the blocks
associated with the file to be freed. Note that there
could be an appreciable time delay between the time a
file is deleted by a user and the time of the corre-
sponding increase in free space in DFS.

4.4 Load Balancing Mechanism
Single Master Server simplifies our design. The master

server knows about the load each chunkserver has. When
the FS Client requests for the file it can give its knowl-
edge to the FS Client so that the chunk servers are not
overloaded. Replicating each chunk into three chunkservers
does not allow the chunkserver to be overloaded.

5. Data Replication/Consistency

Replication is one of the oldest and most important
topics in distributed systems. Replication is the process
of sharing data to ensure consistency between redundant
resources, to improve reliability, fault-tolerance, or acces-
sibility.
In SoFA, all the operations of a replication will be

controlled by a Master Deamon in Master Server, and
it will be controlled at each replica by a Replica Deamon.
This replication mechanism itself will be transparent to
an external user. Also, in a failure scenario, a failover
of replicas is hidden as much as possible.
We use locking and leasing mechanism to ensure the

consistency of DFS. A lease is a contract that gives its

SoFA: A Distributed File System for Search-Oriented Systems

제 권 제 호 년 월17 4 2008 12 235

holder specified property for limited amount of time
and lock means avoiding anyone except the person
holding the lock to make changes in the resources.

6. Experiment Results

We setup a distributed system environment on a
LAN network for experimentation purposes. All the
machines in our implementation use Linux Fedora Core
8 (kernel version: 2.6.25.4-10).
Computer specifications for one system are Intel

E8400 Dual Core CPU 3.00 GHz, 2Gb 6400 PC RAM,
500Gb/7200RPM HDD with 32Mb cache, gigabit Ethernet
card and for network experiment 1000Mbps switch is
used.

6.1 Experiment for DFS Indexing Structures
We implemented the trees in DFS environment using

C++ programming language and conduct the performance
comparison tests. In this test, we use B tree of order 4
(also called 2-3-4 tree). We run test many times to insert,
delete and search a node into a 2-3-4 tree, a Red-Black
tree and an AVL tree. We have collected the execution
time to compute the average time to insert, delete and
search data structures. The test data ranged from small
scale (100,000 records) to large scale (10,000,000 records).
We also conduct a comparison in two operations: writing
a tree into files and loading a tree from files. Finally,
we analyze the tree size in memory (the size of memory
needed to hold the tree). It is an important factor to
assert the quality of a tree.

6.1.1 Storing & Retrieving Performance
The insertion or deletion of an element into a node

in these trees may cause imbalance at that node. In
order to solve this problem, each tree has its own
mechanism. For instance, 2-3-4 trees use splitting to
divide node when that node is overflow or use merging
to merge nodes when one node is underflow. These steps
can be recursive upward to the root node. Similarly,
Red-Black trees use one color-flipping operation or two
rotation operations to deal with imbalance at a node
and in AVL tree only two rotation operations are used.

In this paper, we performed insertion and deletion
test with data ranged from small scale (100,000 records)
to large scale (10,000,000 records).

6.1.2 Searching Performance
The searching result in AVL tree illustrates that AVL

tree is more effective than in Red-Black tree. The height
of a 2-3-4 tree is the smallest compared to others two
data structure. But we can not say that searching in
2-3-4 trees are absolutely faster than the others because
the linear traversal applied to all elements in one node
while searching can take a lot of time.
The searching operation in AVL tree takes O(log n)

time in both the average and worst cases, where n is
the number of nodes in the tree prior to the operation.
However, we found that AVL trees perform better than
B trees for search-intensive applications.
It is observed that by combining tree-based data

0

50

100

150

200

250

300

350

100000 500000 1000000 5000000 10000000

Number of Records

T
im

e
 (

s
e
c
o
n
d
)

AVL Insert AVL Delete B Insert B Delete

Fig. 6. Insert (Insert the whole tree) and Delete (10,000
sample records) Test

Fig. 7. Searching Test

Eunmi Choi Tran, Doan Thanh Bipin Upadhyaya Fahriddin Azimov Luu, Hoang Long Truong, Phuong SangBum Kim Pilsung Kim･ ･ ･ ･ ･ ･ ･

236 한국시뮬레이션학회 논문지

structure and self-balancing data structure, we can over-
come the linear searching which results in the complexity
of O(n) as in normal data structure with the searching
complexity of O(log n), where n is the number of el-
ements in the tree.

6.1.3 Building Index & Saving Configuration
Performance

Based on our experiments with respect to find memory
-efficiency that we performed by inserting records range
from 100,000 to 10,000,000, we found number of dis-
advantages. One of the disadvantages of the 2-3-4 tree
is space waste in memory because of lots of empty
nodes in leaf level. Our approach to this problem is
writing a tree into the file and reloading the tree from
that file when needed [3]. With this approach, we can
reduce considerable amount of time for creating trees
than creating trees from raw-data files.

In the result figures, the horizon axe shows the
number of records and the vertical axe shows the execute
time of these test case. In figure 6, the execution time
of B trees increases dramatically when the number of
records increases above one million records. However,
the execution time of AVL trees in this case steady
increases.
Figures 7 shows the results when randomly deleting\

searching 10,000 nodes from\in B trees and AVL trees.
The execution time in AVL tree is unchanged while B
trees have less stability by changing four times higher
or more.
Figures 8 depict the execution time when writing\

reloading a B trees and AVL trees into\from file. The
B trees execution time always much longer than AVL
trees especially when the number of records increases.
This result shows that the structure in AVL trees is the
better solution in the DFS.
The memory size which each B tree and AVL tree

holds according to each number of records are shown
in figure 9. With the small number of records, the dif-
ference in size of B trees and AVL trees is small. Nev-
ertheless, the difference increases rapidly with large data
(>5,000,000 records).

6.2 Comparison with Local File System and

Hadoop
In this section, we compare our performance with the

Hadoop Distributed File System (HDFS) with 6 servers.
For this experiment we read and write 1GB files in
HDFS and in SoFA. Multiple read/write clients were
used while reading and writing in the systems without
caching.
The result shows that reading/writing big size files

in distributed file system has considerable performance
gain as compared to HDFS. The graph shows the increase
in performance as we add more clients in our DFS.
Compared to HDFS, SoFA has achieved 2 times faster
in reading and 1.5 times faster in writing performance.
Reading is much better performance since search oriented
systems require heavy and fast reading for its right-once
-read-many mode. The performance is better than HDFS
because of the high-performance metadata processing

0

1000

2000
3000

4000

5000

6000
7000

8000

9000

100000 500000 1000000 5000000 10000000

Number of Records

T
im

e
 (

m
ill

is
e
c
o
n
d

AVL Write AVL Read B Write B Read

Fig. 8. Writing and Reading Tree Test

Fig. 9. Memory Size of Trees Comparison

SoFA: A Distributed File System for Search-Oriented Systems

제 권 제 호 년 월17 4 2008 12 237

and optimization of logging and synchronizing during
the process. With the use of AVL tree for metadata in-
dexing, SoFA can process thousands of metadata oper-
ations in one second compare to Hadoop with only a-
round 10-70 operations. Besides, HDFS’ accessing disk
rate for logging is too high (3 times logging for one
0-byte file creation) and there are too many used sy-
nchronization protections. Those degrade the HDFS per-
formance while SoFA reduces them as much as possible.
This result approves the performance improvement of
SoFA System Architecture.

7. Conclusion

SOFA is designed to support very large files of
search-oriented systems. Applications that are ideal to
use our file system are those that deal with large
datasets. SOFA applications need a write-once-read-many
access model for files. A file once created, written, and
closed need not be changed. This assumption simplifies
data coherency issues and enables high throughput data
access. Our system provides fault tolerance by constantly
monitoring, replicating the critical data. We compare our
system with HDFS. The results showed the significant
improvement in file access performance. In future work,
we consider optimizing the file system for better per-
formance. Using UDP for transferring reduces the over-
head time to maintain communication and the correctness
of the file will be checked by comparing the CRC of
the received block at application level.

Reference

1. Tran Doan Thanh, et.al. “A Taxonomy and Survey on
Distributed File Systems”, in Proceedings of NCM, 2008.

2. Erin K, “Lectures on AVL Tree”, http://inst.eecs.berkeley.edu
3. Luu Hoang Long, Eumi Choi, “Data Structure for Dis-
tributed File System”, in Proceedings of NCM, 2008.

4. Bipin Upadhyaya, et. al., “Distributed File System: Effi-
ciency Experiments for Data Access and Communication”,
in Proceedings of NCM, 2008.

5. Goetz G, “Write-Optimized B-Trees”, in the Proceedings
of the 30th VLDB Conference, Toronto, Canada, 2004.

6. Theodore J, Dennis S, “Utilization of B-trees with Inserts,
Deletes and Modifies”, in the Proceedings of PODS Con-
ference. 235-246, 1989.

7. Lyn Turbak, “Lecture on Red-Black Tree”, Wellesley
College, 2001.

9. Chandramohan A. Thekkath, et al, “Frangipani: A scalable
Distributed File System”, System Research Center, Digital
Equipment Corporation, Palo Alto, CA, 1997.

10. Barbara Liskov, et al, “Replication in the Harp File
System”, Laboratory of Computer Science, MIT, Cam-
bridge, CA, 1991.

11. John Douceur and Roger Wattenhofer, “Optimizing file
availability in a server-less distributed file system” In
Proceedings of the 20th Symposium on Reliable Dis-
tributed Systems, 2001.

12. Eliezer levy and Abraham silberschatz, “Distributed File
Systems: Concepts and Examples”, ACM Computing Sur-
veys, Vol. 22, No. 4, December 1990.

13. Yasushi Saito and Marc Shapiro, “Optimistic Replication”,
ACM Computing Surveys, Vol. 37, No. 1, March 2005,
pp. 42-81.

14. Satyanarayanan, M., “A Survey of Distributed File Sys-
tems,” Technical Report CMU-CS-89- 116, Department
of Computer Science, Camegie Mellon University, 1989

15. Howard, J.H., et al, “Scale and Performance in a Dis-
tributed File System,” ACM Transactions on Computer
Systems, Vol. 6, Issue 1, February 1988.

16. Callaghan, B., et.al, “NFS Version 3 Protocol Specifi
cation”, Technical Report RFC 1813, IETF, June 1995.

17. The Hadoop Distributed File System http://hadoop.apache.
org/core/docs/current/hdfs_design.html

18. Ghemawat, S., Gobioff, H., Leung, S.T., “The Google file
system”, ACM SIGOPS Operating Systems Review, Vol-
ume 37, Issue 5, pp. 29-43, December, 2003.

19. Braam, P.J, “The Lustre storage architecture”, White Paper,
Cluster File Systems, Inc., October, 2003.

0.00

50.00

100.00

150.00

200.00

250.00

1 2 3 4 5 6

Number of client(s)

R
e
a
d
/w

ri
te

 p
ro

c
e
ss

in
g
 r

a
te

(M
B

/s
).

SoFA Read Hadoop Read

SoFA Write Hadoop Write

Fig. 10. File System Access Speed Performance of SoFA
and Hadoop

Eunmi Choi Tran, Doan Thanh Bipin Upadhyaya Fahriddin Azimov Luu, Hoang Long Truong, Phuong SangBum Kim Pilsung Kim･ ･ ･ ･ ･ ･ ･

238 한국시뮬레이션학회 논문지

20. “KOSMOS DISTRIBUTED FILE SYSTEM”,
http://kosmosfs.sourceforge.net/

21. Nagle, D., Serenyi, D., Matthews, A., “The Panasas Active-
Scale Storage Cluster: Delivering Scalable High Bandwidth
Storage”, Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, pp. 53-62, 2004.

22. Yu, W., Liang, Sh., Panda, D.K., “High performance sup-
port of parallel virtual file system (PVFS2) over Quadrics”,
Proceedings of the 19th annual international conference
on Supercomputing, pp. 323-331, 2005.

23. “Red Hat Global File System”, White Paper, www.redhat.
com/whitepapers/rha/gfs/GFS_INS0032US.pdf.

최 은 미 (Eunmi Choi) (emchoi@kookmin.ac.kr)

고려대학교 컴퓨터학과 학사1988
1991 Michigan State University, Computer Science, M.S.
1997 Michigan State University, Computer Science, Ph.D.

한동대학교 전산전자공학부 조교수1998 2004～
현재2004～ 국민대학교 비즈니스 학부 부교수IT

관심분야 분산시스템 미들웨어 유비쿼터스 컴퓨팅 소프트웨어 메타 모델링 대용량 검색 시스템: , , , , ,
그리드 컴퓨팅

Tran, Doan Thanh (thanhtd@kookmin.ac.kr)

2002 Hochiminh National University of Science, Telecommunication and Networking, B.S.
2006 Kookmin University, School of Business IT, M.S.
2006 Now Kookmin University, School of Business IT, Ph.D. Candidate～
Areas of Interest: Grid computing, Ubiquitous Computing, Ubiquitous Sensor Network, Web Service

Orchestration

Bipin Upadhyaya (bipin_upd@yahoo.com)

2006 Advanced College of Engineering and Management, Tribhuvan University. B.E
2008 Kookmin University , School of Business IT, M.S.

Areas of Interest: Distributed Computing, Peer-to-Peer Systems, Grid Computing, Social Network

Fahriddin Azimov (fahriddin@hotmail.com)

2007 Tashkent University of Information Technologies, E-commerce, B.S
2007 Now Kookmin University, Graduate School of Business IT. M.S Candidate～
Areas of Interest: Ubiquitous Sensor Network, Distributed File Systems

SoFA: A Distributed File System for Search-Oriented Systems

제 권 제 호 년 월17 4 2008 12 239

LuuHoangLong (luuhoangdragon@gmail.com)

2007 Hochiminh National University of Science, Computer Science, B.S.
2008 Now Kookmin University, School of Business IT, M.S.～
Areas of Interest: Grid computing, Ubiquitous Sensor Network, MIC, Peer 2 Peer Systems, Security

Truong, Thi Ngoc Phuong (ngocphuongtruong@gmail.com)

2005 Ho Chi Minh National University of Science, Software Engineering, BS
2007 Now Kookmin University, School of business IT, Master～
Area of interest: P2P computing, semantic web technology

김 상 범 (amzang@sktelecom.com)

동국대학교 컴퓨터 공학과 학사 졸업1997
한양대학교 경영학 석사 졸업2009 Global MBA
평창정보통신 알타비스타 코리아1998 ()㈜
네띠앙2000 ㈜

야후 코리아2001 !
2007 SK Telecom～

김 필 성 (pskim11@sktelecom.com)

연세대학교 컴퓨터과학과 졸업1997
현재 기술원 연구원1997 SKtelecom C&I～

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

