• Title/Summary/Keyword: 바닥 충격음

Search Result 288, Processing Time 0.014 seconds

Variation Characteristics of Floor Impact Sound by Ceiling Structures in Apartment Buildings (공동주택에 천장구조에 의한 바닥충격음 변화특성에 관한 연구)

  • 조창근
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.13-16
    • /
    • 1993
  • 본 연구에서는 공동주택의 바닥충격음 차음성능 향상을 위한 설계자료의 제시를 위해 천장구조가 서로 다른 공동주택을 대상으로 경량 및 중량 바닥충격음의 현장측정을 통하여 공동주택의 천장구조에 의한 바닥충격음 변화특성을 분석하고 차음성능을 평가하였다. 측정대상 건물에서 천장을 설치한 경우가 비교적 높은 충격음 차음성능 분포를 보이는 것으로 나타났으며, 바닥슬래브 하부 천장에 공기층과 완충재를 함께 설치하는 것은 기존 공동주택 등에서 경량 및 중량 바닥충격음 차음성능을 향상시키기 위한 효과적인 방안임을 확인하였다.

  • PDF

Rating Floor Impact Noise in Apartment Buildings Through Subjective Evaluation Tests (청감실험에 의한 공동주택 바닥충격음의 평가등급 설정)

  • 전진용;류종관
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.88-95
    • /
    • 2003
  • The auditory experiments based on subjective responses were undertaken for the standard heavy and light weight impact noise and rubber ball impact noise, jumping noise to investigate relations between floor Impact noise levels and subjective responses and to establish the upper/lower limits of floor impact noises. As a result, it was shown that relations between floor Impact noise levels and subjective responses was linear and the lower limit of heavy-weight impact noise was L/sub i, Fmax, AW/=46㏈ and the lower limit of light-weight impact noise was L'/sub n,AW/=56㏈. Finally the 3 subjective classes of floor impact noises were established.

Characteristics of Floor Impact Noise Insulation for No Hanger Ceiling Structure in Apartment Building (공동주택 무달대 천장의 바닥충격음 차단 특성)

  • Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.208-213
    • /
    • 2014
  • 공동주택의 천장구조는 바닥충격음을 변화시키는 영향요소중의 하나이다. 천장구조의 진동응답 특성이 바닥충격음에 영향을 주는 요소를 확인하기 위해 천장구조의 달대를 제거하여 콘크리트 슬래브의 진동이 천장구조에 전달되지 않는 무달대 천장구조를 개발하였다. 달대가 시공된 일반 천장구조와 대비하여 무달대 천장구조의 천장판 가속도와 바닥충격음 레벨을 비교하였다. 무달대 천장구조를 사용함으로서 콘크리트 슬래브의 진동이 천장구조에 전달되는 것을 절연되어 천장구조의 진동응답 증폭을 저감시킬 수 있었으며, 저주파 대역의 바닥 충격음 증폭 또한 저감시킬 수 있었다. 일반 천장구조는 100 Hz 이하에서 천장구조의 진동응답이 증폭되어 저주파 대역 바닥충격음이 증폭되었다.

  • PDF

Performance Evaluation of the Floor Impact Sound Insulation in Steel Framed Modular House (강재프레임 모듈러주택의 바닥충격음 성능평가)

  • Chun, Young-Soo;Bang, Jong-Dae;Kim, Gap-Deug;Yoo, Song-Lee
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • This paper presents various attempts to secure the floor impact sound insulation performance on the dry floor system of steel framed modular house that lately attracted domestic attention. Test results show that in the condition of using dry floor system of D31(D32), the light-weight impact noise performance records the top level in the floor impact sound insulation performance grading system. the heavy-weight floor impact noise performance meets the minimum sound level limit in the floor impact sound insulation performance grading system that enacted regulation on housing construction standards.

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

Evaluation on Effect of Constitution of Timber Framed Floor on Insulation Performance Against Impact Sound by Field Measurements (현장실험을 통한 목조바닥의 구성요소가 충격음 차단성능에 미치는 영향 평가)

  • Park, Joo-Saeng;Lee, Sang-Joon;Kim, Se-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.431-444
    • /
    • 2012
  • Constituents of timber framed floor affect the insulation performance against impact sound significantly. Among them, installation of massive sound absorbing layer and reinforcement of stiffness of timber floor have been considered as major factors that improve the insulation performance against impact sound. Researches on evaluating the effect of floor constitutions have been carried out through the field measurements for timber framed buildings in Korea. It is concluded that the impact sound pressure level at the relatively lower frequency governs the overall insulation performance, and can be improved by the installation of sound absorbing layer and reinforcement of floor stiffness. Especially, the insulation performance against heavy impact sound was improved significantly when the massive cement mortar layer for floor heating system was installed and the stiffness was reinforced by shortening the joist span using additional beam at the mid-position of original span.

Analysis of the Reverberation Time in the Normalized Impact Sound Pressure Level (경량충격음 평가시 잔향시간 영향에 대한 고려)

  • Park, C.Y.;Hong, G.P.;Kim, S.H.;Jang, D.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.952-955
    • /
    • 2007
  • 경량충격음레벨을 평가하기 위해서는 수음실의 잔향시간을 측정하여 규준화 바닥충격음레벨을 구하여야 한다. 본 논문에서는 규준화 바닥충격음레벨과 표준화 바닥충격음레벨을 구할 때 고려하는 보정레벨을 중심으로 등가 흡음력을 결정하는 잔향시간과 수음실의 체적을 변수요인으로 분석하였다. 그 결과 측정된 잔향 시간은 공간에 관계없이 기준보다 2배 이상 길게 나타났고, 등가 흡음력은 기준보다 침실의 경우 1/2 정도 작지만 거실의 경우 기준과 거의 유사하게 나타나 침실의 경우 두 보정레벨이 유사하지만 거실의 경우 전자가 후자보다 낮게 보정되는 것으로 나타났다.

  • PDF

Improvement of evaluation method for impact sound reduction performance of floor coverings (바닥 상부 마감재의 충격음 저감성능에 대한 평가방법 개선)

  • Jin-Yun Chung;Han-Sol Song;Guk-Gon Song;Yong-Jin Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.161-167
    • /
    • 2023
  • Recently, floor impact sound has become a serious social problem in Korea. There is an increasing need to improve floor impact sound performance using floor covering installed on the floor of apartment houses. KS F ISO 717-2 and KS F 2863 require measurement under conditions in which the resilient material is not installed. But most apartment houses in Korea install resilient materials to reduce floor imapct sound. The performance evaluation method of floor covering should provide reduced performance for use by residents of apartment houses with resilient materials. Therefore, this paper proposes a reduction performance evaluation under the conditions in which a resilient material is installed to verify the performance of floor covering.

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

Standardization Activity of ISO/TC 43/SC 2/WG 22 Measurement of impact sound improvement of light-weight floors (ISO 140-11(경량 바닥구조의 바닥충격음 저감량 실험실 측정방법)의 제정동향)

  • 장길수;정광용;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1132-1137
    • /
    • 2002
  • 최근 국내에서는 바닥충격음에 대한 측정방법이 개정(2001년 6월 19일자 기술표준원 고시 제2001-334호)되어 KS F 2810-1(바닥충격음 차단성능 현장 측정방법 1부- 표준중량충격원에 의한 방법)과 KS F 2810-2(바닥충격음 차단성능 현장 측정방법 2부- 표준중량충격원에 의한 방법)의 체계가 구축되었다. 이는 현장 측정방법으로서 완성된 건축물에 대한 공간성능을 측정하는 의미를 가지고 있다.(중략)

  • PDF