• Title/Summary/Keyword: 미세먼지저감 장치

Search Result 30, Processing Time 0.026 seconds

Numerical Study of Impact for Particulate Matter Reduction Device According to Installation of Perforated Plate and Mixer on Marine Diesel Engine (선박용 디젤엔진의 미세먼지저감 장치에 다공판과 믹서의 장착이 미치는 영향에 대한 수치해석적 연구)

  • Yun, Byoungkyu;Cho, Sanghyun;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.968-973
    • /
    • 2019
  • This study presents the characteristics of a pressure drop and uniformity index for a particulate matter reduction device with a perforated plate and mixer for marine diesel engines. The perforated plate and mixer equipped on the particulate matter reduction device induce an increase of exhaust gas reduction performance by increasing the uniformity index. Whereas, the perforated plate induces pressure drop increases in the particulate matter reduction device. Therefore to calculate the effect of the uniformity index and pressure drop of the perforated plates and mixer, this study combines several cases using five types of perforated plates and one type of mixer. Consequently, these results were analyzed to determine the optimized type and position of the perforated plate and mixer.

Intelligent AI-based Fine Dust Reduction Control System for Thermal Power Generation (지능형 AI기반의 미세먼지 저감 제어 시스템)

  • Lim, Sang-teak;Baek, Soon-chang;Song, Yong-jun;Baek, Yeong-tae;Choi, Cha-bong;Song, Seung-in
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.53-56
    • /
    • 2019
  • 본 논문에서는 화력을 이용하는 대형 파워 플랜트 설비의 미세먼지 발생량을 저감시키고 능동적으로 제어 할 수 있는 효율적인 시스템을 제안한다. 이 시스템은 기존의 고정형으로 설계된 집진기 방식의 고정부하량 한계점과 극복하고 초미세먼지 PM2.5, 미세먼지 PM10의 발생량에 따라 IoT센서 감지에 의해 지능형 알고리즘으로 효율적으로 저감 제어 처리량을 극대화하고, 미세먼지 발생량을 최소화한다. 또한 이 시스템의 차별성은 기존의 집진기에서 잡혀지지 않는 초미세먼지를 새로운 형태의 물질인 FAA(Fine-dust Adsorption Agent)를 통해 연료 연소 시 발생되는 초미세먼지 미세입자 자체를 크게 만들어 기존 설비 집진기 필터에 포집되게 하는 혁신적인 방식이다. 이번 연구를 통해 350도~1000도 열원에서 작용할 수 있는 화학물질 FAA 용액(Agent)을 개발 하였으며 지능형 AI 분사장치를 통해 연료에 첨가되어 연소 시 미세먼지를 20배~50배까지 볼륨을 확대시켜 기존 집진필터에 포집될 수 있게 동작된다. 이때, 기존 설계된 집진기의 한계(부하)용량에 상관없이 미세먼지 발생량을 상황인식 반응형 알고리즘(AI제어) 통해 분사량을 능동적으로 조절하여 미세먼지 발생량을 저감하는 진보적 혁신성을 지닌다.

  • PDF

Topic Modeling on Fine Dust Issues Using LDA Analysis (LDA 기법을 이용한 미세먼지 이슈의 토픽모델링 분석)

  • Yoon, soonuk;Kim, Minchul
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.23-29
    • /
    • 2020
  • In this study, the last 10 years of news data on fine dust was collected and 80 topics are selected through LDA analysis. As a result, weather-related information made up the main words for the topic, and we can see that fine dust becomes a big issue below 10 degrees Celsius. The frequency of exposure to the media and the maximum concentration of fine dust are correlated with positive. Topics related to fine dust reduction measures and the government's comprehensive measures over the past decade, topics related to products such as air purifiers related to fine dust, topics related to policies protecting vulnerable people from fine dust, and topics on fine dust reduction through R&D were found to be major topics. Measures against fine dust as a social issue can be seen to be closely related to the government's policy.

Suggestion of Device for Collecting Fine Dust using Drone (드론을 이용한 미세먼지 데이터 수집 장치 제안)

  • Jo, Youngjun;Baek, SeungHyun;Lee, JongGu;Yu, Sangmin;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.397-400
    • /
    • 2019
  • 급격히 증가하는 자동차 수, 발전량 증가 등으로 인하여 미세먼지로 인한 환경오염이 심각한 사회문제로 대두되고 있는 실정이다. 50개가 넘는 국가들이 권고치 이상의 미세먼지로 인해 피해를 받고 있으며 각 피해국들은 미세먼지 저감 대책 및 발생을 최소화하기 위한 방안을 연구하고 있다. 하지만 현재 고정형 미세먼지 취득 드론으로는 다양한 포인트의 미세먼지 데이터를 수집하기 힘든 상황이며, 기존 드론을 활용한 방법에서 도 회전 날개의 영향으로 인해 정확한 데이터를 수집하기 힘든 실정이다. 본 논문에서는 드론과 특정 구조물을 활용한 미세먼지 수집 방법을 제안하고 이의 효율성을 보여주고자 한다.

  • PDF

Analysis of Prerequisites for Using Surveillance Drones and Water Fog Spraying Drones for Fine Dust Reduction in Smart Construction (스마트건설에서 미세먼지 저감을 위한 감시드론 및 Water Fog 분사 드론을 활용하기 위한 사전 요건 분석)

  • Kim, Young Hyun;Han, Jaegoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.249-250
    • /
    • 2021
  • The use of smart equipment such as drones is increasing in construction sites. In particular, there are frequent cases where two or more drones must be used at the same time. This leads to different considerations than when operating a single unit. This study aims to analyze the requirements to be considered in the case of the operation of drones that monitor fine dust and drones that reduce fine dust in order to reduce fine dust generated in construction sites.

  • PDF

Suggestion and Verification of Architecture for Collecting Fine Dust using Drone (미세먼지 수집 드론의 구조 제안 및 검증)

  • Jo, Young-Jun;Jang, Min-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.125-132
    • /
    • 2020
  • Due to the rapidly increasing number of cars and power generation, environmental pollution caused by fine dust is becoming a serious social problem. Especially fine dust becomes an important issue nowadays. More than 50 countries are suffering from fine dust above the recommended level, and each affected country is studying the measures to reduce fine dust and minimize its occurrence. However, at present, it is difficult to collect fine dust data from the various points with fixed fine dust acquisition drones, and also to collect accurate data due to the influence of rotating blades even in the existing drone method. In this paper, we propose a method for collecting fine dust using drones and a sensing parts architecture and show its effectiveness.

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

Preliminary Experimental Study for Water Recovery and Particulate Matter Reduction through a Hybrid System that Combines Exhaust Cooling and Absorption from Ships (선박배출 배기냉각과 흡수식이 결합된 하이브리드 시스템을 통한 물 회수 및 미세먼지 저감을 위한 기초실험연구)

  • Youngmin Kim;Donggil Shin;Younghyun Ryu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1252-1258
    • /
    • 2022
  • The exhaust gas from the marine engines include a quantity of water vapor and particulate matter. The total particulate matter includes filterable particulate matter (FPM) and condensable particulate matter (CPM) that condense after releasing into the atmosphere. The portion of CPM is higher than that of FPM that is removable through the filter before discharging. An experimental setup for waste heat and water recovery and removal of CPM in the exhaust gas was tested using an industrial gas boiler in the laboratory. The water and CPM in the exhaust gas were removed through the first stage of cooling method and further removed through the second stage of absorption method. The efficiencies of water recovery were 73% after the first stage of cooling method and 90% after the second stage of absorption method. At the same time, the CPM was removed by 80-90% through the processes. The waste heat recovered could be used to process heat, and the water recovered could be used to process water in the ship. Furthermore, the CPM, which is a major source of the particulate matter but not subject to administrative regulation, could be removed effectively.