• Title/Summary/Keyword: 미세먼지(PM-10)

Search Result 553, Processing Time 0.034 seconds

Physico-Chemical Characteristics of Visibility Impairment between Seoul and Incheon (서울ㆍ인천 지역 시정장애의 광ㆍ화학적 특성)

  • 김경원;박한석;김영준;김신도;강창희;강공언;이석조
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.199-200
    • /
    • 2003
  • 대기환경기준은 1979년 2월 아황산가스에 대한 기준을 최초로 설정한 이래 1983년 8월에는 일산화탄소, 이산화질소, 옥시단트, 먼지, 탄화수소, 1991년 2월에는 납의 환경기준을 설정하여 관리하여 왔으며 1993년도에는 입자의 직경이 10$\mu\textrm{m}$ 이하(PM10)인 미세먼지 기준을 새로이 정하였다. 그럼에도 불구하고 대도시를 중심으로 국민들의 시정 장애 현상에 대한 불쾌감은 더욱더 심각해지고 있다. 실제로 서울시의 목측(prevailing visibility)자료에 의하면, 1970년 이후 상대습도가 60% 미만인 건조한 날 시정이 5km 이하로 관측된 빈도수가 증가하고 있는 추세이다. (중략)

  • PDF

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Understanding Impact of the Volcanic Eruption of Nishinoshima, Japan on Air Quality in the South Korean Peninsula (일본 니시노시마 화산 분화에 의한 한반도 남부 대기질 영향 분석)

  • Cheolwoo Chang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.196-209
    • /
    • 2023
  • The Nishinoshima volcano, located 940 km south of Tokyo, experienced an eruption from June to August 2020. The volcanic gas and ash from the eruption of Nishinoshima that occurred at the end of July 2020 was reported to have the potential to affect the Korean Peninsula. In this study, we used Ash3D, a numerical simulation program for volcanic ash dispersion, to investigate the eruption that occurred at 0:00 local time on July 28, 2020, with a volcanic explosivity index of three. The results showed that the volcanic ash cloud reached Okinawa on the morning of July 30, carried by an east wind. It then moved northward and reached Jeju Island on August 1, eventually circulating in a clockwise direction and reaching southern part of the Korean Peninsula on August 2. The concentration of Particulate Matter 10 (PM10), measured at the Jeju Gosan Meteorological Observatory in Jeju Island, increase from August 1. A similar increase in PM10 concentration was observed at the Gudeok Mountain Weather Station in Busan from August 2. These findings suggested that eruption of the Nishinoshima volcano had an impact on the fine dust concentrations at Jeju Island and southern part of the Korean Peninsula.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

An automated determination method of particulate matter on food surface (식품표면에 부착된 미세먼지의 정량법)

  • Park, Sun-Young;Bang, Bong-Jun;Lim, Dayoung;Chung, Donghwa;Lee, Dong-Un
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • Particulate matter (PM) is an air pollutant that causes serious environmental problems in Korea and other countries. The annual average PM10 concentration in Korea is around 40 ㎛/㎥, which is more than twice as high as the WHO recommended standard. When consumed with food, fine PM can pose a risk to humans. However, the risk of fine PM has been focused on the risk of fine PM introduced through the respiratory system. We investigated the quantitative measuring methods of PM10 on food surface to identify possible risk analysis of fine PM. The surfaces of food with artificially contaminated PM10 were observed with a scanning electron microscope(SEM). An automatic object-based image analysis was used to analyze the amount and size distribution of particulate matter contained in SEM micrographs.

Understanding on Regional Characteristics of Particular Matter in Seoul - Distribution of Concentration in Borough Spatial Area and Relation with the Number of Registered Vehicles - (서울시 미세먼지 농도의 지역적 특성파악을 위한 연구 - 구별 분포 특성 및 차량등록대수와의 관계 -)

  • Park, Jong-Kil;Choi, Yun-Jeong;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • Average concentration of PM in Seoul metropolitan area satisfied the Korean air quality standard in 2010. Furthermore, concentration of PM in all boroughs across Seoul met the air environment standard in 2012. $PM_{10}$ concentration was relatively higher in center of Seoul in comparison to the rest, while $PM_{2.5}$ concentration showed exactly the contrary result. We analyzed the effect that PM emissions from vehicles would have on PM concentrations across Seoul. The results showed that average annual PM concentration recently decreased in Seoul although the number of vehicles registered annually continued its upward trend. By contrast, average fine dust concentrations in Seoul showed a decline which suggested that correlation between annual average PM concentrations and number of registered vehicles remained low. However, year-on-year vehicle registration rate recently showed a declining tendency in the same way as the trend of changes in average PM concentrations. Particularly, the upward trend in annual average PM concentrations in 2002 and 2007 was consistent with the increase in vehicle registration rate, suggesting that vehicle registration rate was closely associated with changes in PM concentrations.

Exploration of Beneficial Herbal Medicines to Attenuate Particulate Matter-induced Cellular Injury in Human Corneal Epithelial Cells (인간 각막상피세포에서 미세먼지로 인한 세포 손상을 완화할 수 있는 유익한 한약재의 탐색)

  • Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Park, Sung-Ho;Kim, Mi-Young;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.647-658
    • /
    • 2022
  • Particulate matter (PM) is known to be involved in the onset and progression of various diseases by promoting oxidative and inflammatory reactions as air pollutants containing various small particles that are harmful. In this study, the protective efficacy of herbal medicines was evaluated in human corneal epithelial cells (hCECs) to select natural products that can protect the eye, the primary organ directly exposed to external pollutants from PM. As a result, five candid ate herbal medicines [Cheonmundong, Asparagus Rhizome; Seokchangpo, Aciru Gramineri Rhizoma; Hwangryeon, Coptidis Rhizoma; Gamgug, Chrysanthemi Indici Flos; and Geumjanhwa (Marigold flower petals)] which showed inhibitory efficacy on PM2.5-induced cytotoxicity, were selected from among 12 candidate herbal medicines. To evaluate the antioxidant activity of these candidate substances, the reactive oxygen species (ROS) scavenging ability was investigated, and it was found that the extracts of Seokchangpo, Cheonmundong and Hwangryeon showed a significant inhibitory effect on PM2.5-induced ROS production, which was correlated with the preservation of mitochondrial activity. In addition, it was confirmed that they could block DNA damage caused by PM2.5 through analysis of 8-hydroxy-2'-deoxyguanosine generation and phosphorylated-H2A histone family member X (γ- H2AX) expression. Furthermore, the increase in inflammasome activity and inflammatory response in PM2.5-treated hCECs was also canceled in the presence of these extracts. Although additional studies are needed, the results of this study will be used as primary data to find novel natural compounds that protect hCECs from PM.

The Influence of Attitude, Subjective Norm, and Self-efficacy on Prevention Behaviors of Particulate Matter (PM10-2.5) Exposure in Young Adults (성인 초기의 태도, 주관적 규범, 자기효능감이 미세먼지 노출저감화행위에 미치는 영향)

  • Shin, Hye Sook;Ji, Eun Sun;Koo, Jee Hyun;Kim, Ju Hee
    • Journal of East-West Nursing Research
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Purpose: The purpose of this study was to identify factors influencing prevention behaviors for particulate matter exposure in young adults. Methods: A convenience sample of 330 young adults was recruited from the community. Data were collected using a structured questionnaire and analyzed by descriptive statistics, t-test, ANOVA, Pearson's correlation coefficients, and stepwise multiple regression analysis with the SPSS/WIN 26.0 program. Results: The factors affecting prevention behaviors of particulate matter exposure were self-efficacy (β=.54 p<.001), subjective norm (β=.18, p<.001) and using the air purifier (β=.-17, p<.001). These variables had a 46% variance to explain prevention behaviors for particulate matter exposure. Conclusion: Findings showed that 'self-efficacy' and 'subjective norm' were important factors influencing prevention behaviors of particulate matter exposure in young adults. Thus, we need to consider the positive impact of prevention behaviors of particulate matter exposure and increase the chances of prevention behaviors of particulate matter exposure program for young adults.

Protective effect of Codium fragile extract on fine dust (PM2.5)-induced toxicity in nasal cavity, lung, and brain cells (미세먼지(PM2.5)로 유도된 세포(비강, 폐, 뇌)독성에 대한 청각(Codium fragile)의 보호효과)

  • Kim, Gil Han;Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Shin, Eun Jin;Moon, Jong Hyeon;Kim, Min Ji;Lee, Hyo Lim;Jeong, Hye Rin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.223-229
    • /
    • 2021
  • To evaluate the protective effect of Codium fragile on fine dust (PM2.5)-induced cytotoxicity, we investigated its antioxidant activity and cell protective effect on PM2.5-exposed cells. The 40% ethanolic extract of C. fragile showed the highest total phenolic content, whereas the water extract of C. fragile showed the highest total polysaccharide content. The protective effect of the extracts on PM2.5-induced oxidative damage in nasal cavity (RPMI2650), lung (A549), brain (MC-IXC), hippocampus (HT-22), and microglia (BV-2) cells was evaluated by measuring the intracellular reactive oxygen species (ROS) content and cell viability. The results showed that the 40% ethanolic extract more efficiently inhibited ROS production than the water extract. In contrast, PM2.5-exposed cells treated with the water extract showed higher viability than those treated with the 40% ethanolic extract.