Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.8.647

Exploration of Beneficial Herbal Medicines to Attenuate Particulate Matter-induced Cellular Injury in Human Corneal Epithelial Cells  

Kim, Da Hye (Anti-Aging Research Center, Dong-eui University)
Kim, Min Yeong (Anti-Aging Research Center, Dong-eui University)
Hwangbo, Hyun (Anti-Aging Research Center, Dong-eui University)
Ji, Seon Yeong (Anti-Aging Research Center, Dong-eui University)
Park, Seh-Kwang (Research and Development Department, BGN CARE Co., Ltd.)
Park, Sung-Ho (Research and Development Department, BGN CARE Co., Ltd.)
Kim, Mi-Young (Research and Development Department, BGN CARE Co., Ltd.)
Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
Publication Information
Journal of Life Science / v.32, no.8, 2022 , pp. 647-658 More about this Journal
Abstract
Particulate matter (PM) is known to be involved in the onset and progression of various diseases by promoting oxidative and inflammatory reactions as air pollutants containing various small particles that are harmful. In this study, the protective efficacy of herbal medicines was evaluated in human corneal epithelial cells (hCECs) to select natural products that can protect the eye, the primary organ directly exposed to external pollutants from PM. As a result, five candid ate herbal medicines [Cheonmundong, Asparagus Rhizome; Seokchangpo, Aciru Gramineri Rhizoma; Hwangryeon, Coptidis Rhizoma; Gamgug, Chrysanthemi Indici Flos; and Geumjanhwa (Marigold flower petals)] which showed inhibitory efficacy on PM2.5-induced cytotoxicity, were selected from among 12 candidate herbal medicines. To evaluate the antioxidant activity of these candidate substances, the reactive oxygen species (ROS) scavenging ability was investigated, and it was found that the extracts of Seokchangpo, Cheonmundong and Hwangryeon showed a significant inhibitory effect on PM2.5-induced ROS production, which was correlated with the preservation of mitochondrial activity. In addition, it was confirmed that they could block DNA damage caused by PM2.5 through analysis of 8-hydroxy-2'-deoxyguanosine generation and phosphorylated-H2A histone family member X (γ- H2AX) expression. Furthermore, the increase in inflammasome activity and inflammatory response in PM2.5-treated hCECs was also canceled in the presence of these extracts. Although additional studies are needed, the results of this study will be used as primary data to find novel natural compounds that protect hCECs from PM.
Keywords
DNA damage; human corneal epithelial cells; inflammasome; particulate matter 2.5; ROS;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Dominic, A., Le, N. T. and Takahashi, M. 2022. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid. Redox Signal. 36, 784-796.   DOI
2 Fu, Q., Mo, Z., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, P., Wu, L., Lou, X., Chen, Z. and Yao, K. 2017. Air pollution and outpatient visits for conjunctivitis: A case-crossover study in Hangzhou, China. Environ. Pollut. 231, 1344-1350.   DOI
3 Gao, Z. X., Song, X. L., Li, S. S., Lai, X. R., Yang, Y. L., Yang, G., Li, Z. J., Cui, Y. H. and Pan, H. W. 2016. Assessment of DNA damage and cell senescence in corneal epithelial cells exposed to airborne particulate matter (PM2.5) collected in Guangzhou, China. Invest. Ophthalmol. Vis. Sci. 57, 3093-3102.   DOI
4 Guan, L., Geng, X., Stone, C., Cosky, E. E. P., Ji, Y., Du, H., Zhang, K., Sun, Q. and Ding, Y. 2019. PM2.5 exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. Environ. Toxicol. 34, 530-538.   DOI
5 Huang, Y., Xu, W. and Zhou, R. 2021. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol. 18, 2114-2127.   DOI
6 Hyun, S. W., Song, S. J., Park, B., Lee, T. G. and Kim, C. S. 2020. Toxicological effects of urban particulate matter on corneal and conjunctival epithelial cells. Toxicol. Res. 36, 311-318.   DOI
7 Jung, S. J., Mehta, J. S. and Tong, L. 2018. Effects of environment pollution on the ocular surface. Ocul. Surf. 16, 198-205.   DOI
8 Kelley, N., Jeltema, D., Duan, Y. and He, Y. 2019. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20, 3328.
9 Kinra, M., Nampoothiri, M., Arora, D. and Mudgal, J. 2022. Reviewing the importance of TLR-NLRP3-pyroptosis pathway and mechanism of experimental NLRP3 inflammasome inhibitors. Scand. J. Immunol. 95, e13124.
10 Cui, Y. H., Hu, Z. X., Gao, Z. X., Song, X. L., Feng, Q. Y., Yang, G., Li, Z. J. and Pan, H. W. 2018. Airborne particulate matter impairs corneal epithelial cells migration via disturbing FAK/RhoA signaling pathway and cytoskeleton organization. Nanotoxicology 12, 312-324.   DOI
11 Fabricant, D. S. and Farnsworth, N. R. 2001. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109(Suppl 1), 69-75.
12 Geric, M., Gajski, G. and Garaj-Vrhovac, V. 2014. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. Ecotoxicol. Environ. Saf. 105, 13-21.   DOI
13 Hyun, S. W., Kim, J., Park, B., Jo, K., Lee, T. G., Kim, J. S. and Kim, C. S. 2019. Apricot kernel extract and amygdalin inhibit urban particulate matter-induced keratoconjunctivitis sicca. Molecules 24, 650.
14 Auger, C,. Vinaik, R., Appanna, V. D. and Jeschke, M. G. 2021. Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism 118, 154733.
15 Larosa, V. and Remacle, C. 2018. Insights into the respiratory chain and oxidative stress. Biosci. Rep. 38, BSR20171492.
16 Lee, H., Hwang-Bo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Park, C., Hong, S. H., Kim, G. Y., Song, K. S., Hyun, J. W. and Choi, Y. H. 2020. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ. Pollut. 262, 114301.
17 Kang, W. S., Choi, H., Lee, K. H., Kim, E., Kim, K. J., Kim, J. S., Na, C. S. and Kim, S. 2021. Peucedanum japonicum Thunberg and its active components mitigate oxidative stress, inflammation and apoptosis after urban particulate matter-induced ocular surface damage. Antioxidants (Basel) 10, 1717.
18 Klopfer, J. 1989. Effects of environmental air pollution on the eye. J. Am. Optom. Assoc. 60, 773-778.
19 Lee, H., Kim, D. H., Kim, J. H., Park, S. K., Jeong, J. W., Kim, M. Y., Hong, S. H., Song, K. S., Kim, G. Y., Hyun, J. W. and Choi, Y. H. 2021. Urban aerosol particulate matter promotes necrosis and autophagy via reactive oxygen species-mediated cellular disorders that are accompanied by cell cycle arrest in retinal pigment epithelial cells. Antioxidants (Basel) 10, 149.
20 Lee, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Kim, S. Y., Hwangbo, H., Park, C., Hong, S. H., Kim, G. Y. and Choi, Y. H. 2021. The protective effect of oral application of Corni Fructus on the disorders of the cornea, conjunctiva, lacrimal gland and retina by topical particulate matter 2.5. Nutrients 13, 2986.   DOI
21 Lee, H., Park, C., Kwon, D. H., Hwangbo, H., Kim, S. Y., Kim, M. Y., Ji, S. Y., Kim, D. H., Jeong, J. W., Kim, G. Y., Hwang, H. J. and Choi, Y. H. 2021. Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway. Nutr. Res. Pract. 15, 686-702.   DOI
22 Li, X., Kang, B., Eom, Y., Zhong, J., Lee, H. K., Kim, H. M. and Song, J. S. 2022. Comparison of cytotoxicity effects induced by four different types of nanoparticles in human corneal and conjunctival epithelial cells. Sci. Rep. 12, 155.
23 Lin, C. C., Chiu, C. C., Lee, P. Y., Chen, K. J., He, C. X., Hsu, S. K. and Cheng, K. C. 2022. The adverse effects of air pollution on the eye: A review. Int. J. Environ. Res. Public Health 19, 1186.
24 Molagoda, I. M. N., Kavinda, M. H. D., Choi, Y. H., Lee, H., Kang, C. H., Lee, M. H., Lee, C. M. and Kim, G. Y. 2021. Fisetin protects HaCaT human keratinocytes from fine particulate matter (PM2.5)-induced oxidative stress and apoptosis by inhibiting the endoplasmic reticulum stress response. Antioxidants (Basel) 10, 1492.
25 Mu, N., Wang, H., Chen, D., Wang, F., Ji, L., Zhang, C., Li, M. and Lu, P. 2022. A novel rat model of dry eye induced by aerosol exposure of particulate matter. Invest. Ophthalmol. Vis. Sci. 63, 39.
26 Park, E. J., Chae, J. B., Lyu, J., Yoon, C., Kim, S., Yeom, C., Kim, Y. and Chang, J. 2017. Ambient fine particulate matters induce cell death and inflammatory response by influencing mitochondria function in human corneal epithelial cells. Environ. Res. 159, 595-605.   DOI
27 Quezada-Maldonado, E. M., Sanchez-Perez, Y., Chirino, Y. I. and Garcia-Cuellar, C. M. 2021. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. Environ. Pollut. 287, 117313.
28 Lee, T. G., Hyun, S. W., Jo, K., Park, B., Lee, I. S., Song, S. J. and Kim, C. S. 2019. Achyranthis radix extract improves urban particulate matter-induced dry eye disease. Int. J. Environ. Res. Public Health 16, 3229.
29 Liu, K., Hua, S. and Song, L. 2022. PM2.5 exposure and asthma development: The key role of oxidative stress. Oxid. Med. Cell. Longev. 2022, 3618806.
30 Niu, L., Li, L., Xing, C., Luo, B., Hu, C., Song, M., Niu, J., Ruan, Y., Sun, X. and Lei, Y. 2021. Airborne particulate matter (PM2.5) triggers cornea inflammation and pyroptosis via NLRP3 activation. Ecotoxicol. Environ. Saf. 207, 111306.
31 Rana, S., Saxena, M. R. and Maurya, R. K. 2022. A review on morphology, nanostructure, chemical composition, and number concentration of diesel particulate emissions. Environ. Sci. Pollut. Res. Int. 29, 15432-15489.   DOI
32 Spano, M., Di Matteo, G., Ingallina, C., Ambroselli, D., Carradori, S., Gallorini, M., Giusti, A. M., Salvo, A., Grosso, M. and Mannina, L. 2022. Modulatory properties of food and nutraceutical components targeting NLRP3 inflammasome activation. Nutrients 14, 490.
33 Shi, J. Q., Wang, B. R., Jiang, T., Gao, L., Zhang, Y. D. and Xu, J. 2020. NLRP3 Inflammasome: A potential therapeutic target in fine particulate matter-induced neuroinflammation in Alzheimer's disease. J. Alzheimers Dis. 77, 923-934.   DOI
34 Piao, M. J., Ahn, M. J., Kang, K. A., Ryu, Y. S., Hyun, Y. J., Shilnikova, K., Zhen, A. X., Jeong, J. W., Choi, Y. H., Kang, H. K., Koh, Y. S. and Hyun, J. W. 2018. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch. Toxicol. 92, 2077-2091.   DOI
35 Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. B. and Uddin, M. S. 2021. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 27, 233.
36 Rajput, J. S. and Trivedi, M. K. 2022. Determination and assessment of elemental concentration in the atmospheric particulate matter: A comprehensive review. Environ. Monit. Assess. 194, 243.
37 Shi, K., Yin, Q., Tang, X., Yu, X., Zheng, S. and Shentu, X. 2022. Necroptosis contributes to airborne particulate matter-induced ocular surface injury. Toxicology 470, 153140.
38 Tan, G., Li, J., Yang, Q., Wu, A., Qu, D. Y., Wang, Y., Ye, L., Bao, J. and Shao, Y. 2018. Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci. Rep. 8, 17828.
39 Zeng, X., Liu, D., Wu, W. and Huo, X. 2022. PM2.5 exposure inducing ATP alteration links with NLRP3 inflammasome activation. Environ. Sci. Pollut. Res. Int. 29, 24445-24456.   DOI
40 Xu, Z., Wang, W., Liu, Q., Li, Z., Lei, L., Ren, L., Deng, F., Guo, X. and Wu, S. 2022. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. Environ. Pollut. 292, 118336.
41 Zhang, X., Yang, L., Zhang, H., Xing, W., Wang, Y., Bai, P., Zhang, L., Hayakawa, K., Toriba, A., Wei, Y. and Tang, N. 2021, Assessing approaches of human inhalation exposure to polycyclic aromatic hydrocarbons: A review. Int. J. Environ. Res. Public Health 18, 3124.
42 Zhang, Y., Yang, W., Li, W. and Zhao, Y. 2021. NLRP3 inflammasome: Checkpoint connecting innate and adaptive immunity in autoimmune diseases. Front. Immunol. 12, 732933.
43 AbuArrah, M., Yuli Setianto, B., Faisal, A. and Hamim Sadewa, A. 2021. 8-Hydroxy-2-deoxyguanosine as oxidative DNA damage biomarker of medical ionizing radiation: A scoping review. J. Biomed. Phys. Eng. 11, 389-402.
44 Valacchi, G., Magnani, N., Woodby, B., Ferreira, S. M. and Evelson, P. 2020. Particulate matter induces tissue oxInflammation: From mechanism to damage. Antioxid. Redox Signal. 33, 308-326.   DOI
45 Yang, L., Zhang, H., Zhang, X., Xing, W., Wang, Y., Bai, P. and Zhang, L., Hayakawa, K., Toriba, A. and Tang, N. 2021. Exposure to atmospheric particulate matter-bound polycyclic aromatic hydrocarbons and their health effects: A review. Int. J. Environ. Res. Public Health 18, 2177.
46 Yang, Q., Li, K., Li, D., Zhang, Y., Liu, X. and Wu, K. 2019. Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed. Pharmacother. 117, 109177.
47 Boo, Y. C. 2019. Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants (Basel) 8, 379.
48 Campbell, M. and Doyle, S. L. 2013. An eye on the future of inflammasomes and drug development in AMD. J. Mol. Med. (Berl) 91, 1059-1070.   DOI
49 Diao, P., He, H., Tang, J., Xiong, L. and Li, L. 2021. Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress. Biomed. Pharmacother. 138, 111534.