• Title/Summary/Keyword: 미생물 유전체 분석

Search Result 151, Processing Time 0.024 seconds

Investigation of Conserved Genes in Microorganism (미생물의 보존적 유전자 탐색)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Shim Doo-Hee;Park Eun-Kyung;Kim Jin-Wook;Li Hua-Yue;Nam Chun-Suk;Kim Nam Young;Lee Eo-Jin;Back Jin-Wook;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.261-266
    • /
    • 2005
  • To figure out conserved genes in 66 microbial species and measuring the degree of conservation, analyses based on COG (Clusters of Orthologous Groups of proteins) algorithm were applied. Sixty-six microbial genomes, including three eukaryotes, hold 63 conserved orthologs in common. The majority $(82.5\%)$ of the conserved genes was related to translation, meaning the importance of protein in living creatures. Ribosomal protein S12 (COG0048) and L14 (COG0093) were more conserved genes than others from the distance value analysis. Phylogenetically related microbes grouped in genome analysis by average and standard deviation of 63 conserved genes. The 63 conserved genes, found in this research, would be useful in basic research and applied ones such as antibiotic development.

Rapid bacterial identification using Raman spectroscopy (라만 분광법을 활용한 세균 검측 기술)

  • No, Jee Hyun;Lee, Tae Kwon
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • Raman microspectroscopy is a promising tool for microbial analysis at single cell level since it can rapidly measure the cell materials including lipids, nucleic acids, and proteins by measuring the inelastic scattering of a molecule irradiated by monochromatic lights. Using Raman spectra provides high specificity and sensitivity in classification of bacteria at the strain level. In addition, a Raman approach coupled with stabled isotope such as $^{13}C$ and $^2H$ is able to detect and quantify general metabolic activity at single cell level. After bacterial detection process by Raman microspectroscopy, interested unculturable cell sorting and single cell genomics can be accomplished by combination with optical tweezer and microfluidic devices. In this review, the characteristics and applications of Raman microspectroscopy were reviewed and summarized in order to provide a better understanding of microbial analysis using Raman spectroscopy.

Draft genome sequences of Vibrio splendidus KCTC 11899BP, which produces hyaluronate lyase in the presence of hyaluronic acid (히알우론산 유도하에 히알우로네이트 라이아제를 생산하는 Vibrio splendidus KCTC 11899BP균주의 유전체 서열 분석)

  • Park, Joo Woong;Lee, Sang-Eun;Shin, Woon-Seob;Kim, Kyoung Jin;Kim, Youn Uck
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.302-304
    • /
    • 2018
  • We, for the first time, isolated and identified a Vibrio splendidus KCTC 11899BP producing hyaluronate lyase from seawater. This enzyme is produced only when hyaluronic acid (HA) is added to the basal medium. Hyaluronate lyases are produced by microorganisms, which degrade the ${\beta}$-(1, 4) bond of HA to produce disaccharide. The genome of KCTC 11899BP, which consist of two circular contigs that are 3,522 kb (contig 1) long and 1,986 kb (contig 2) long respectively, as like other Vibrio sp. that contained 2 chromosomes. The genome included 4,700 predicted open reading frames, G + C content 44.12%, 137 tRNA genes, and 46 rRNA genes.

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds (해양 해면체로부터 분리한 세균으로 항알러지성물질을 생산하는 Bacillus safensis KCTC 12796BP의 유전체 해독)

  • Hanh, Nguyen Phan Kieu;Kim, Soo Hee;Kim, Geum Jin;Choi, Hyukjae;Nam, Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2018
  • The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next-generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes in addition to one tmRNA were allocated. More than 30 CDSs for sporulation, 16 CDSs for spore coat, and 20 CDSs for germination were also assigned in the chromosome. Several genes for capsular polysaccharide biosynthesis and for flagella biosynthesis and chemotaxis in addition to genes for osmotic tolerance through glycine-choline betaine pathway were also identified. Above all, the biosynthetic gene cluster for anti-allergic compounds seongsanamides were found among two non-ribosomal peptide synthetase (NRPS) gene clusters for secondary metabolites.

Heterologous Expression of a Model Polyketide Pathway in Doxorubicin-overproducing Streptomyces Industrial Mutants (방선균 항생제 고생산 산업균주를 기반으로 한 모델 폴리케타이드의 이종숙주 발현)

  • Kim, Hye-Jin;Lee, Han-Na;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2012
  • The Streptomyces peucetius OIM (Overproducing Industrial Mutant) strain is a recursively-mutated and optimally-screened strain used for the industrial production of polyketide antibiotics, such as doxorubicin (DXR). Using the S. peucetius OIM mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. The level of aloesaponarin II production was noted as being significantly higher in the OIM strain than in the wild-type S. peucetius, as well as in the regulatory network-stimulated S. coelicolor mutant strain. Moreover, the aloesaponarin II production level was seen to be even higher in a down-regulator $wblA_{spe}$-deleted S. peucetius OIM strain, implying that the rationally-engineered S. peucetius OIM mutant strain could be used as an efficient surrogate host for the high expression of foreign polyketide pathways.

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment (GM 파파야 개발 및 생물안전성 평가 연구 동향)

  • Kim, Ho Bang;Lee, Yi;Kim, Chang-Gi
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.

Development of prevotella intermedia ATCC 49046 Strain-Specific PCR Primer Based on a Pig6 DNA Probe (Pig6 DNA probe를 기반으로 하는 Prevotella intermedia ATCC 49046 균주-특이 PCR primer 개발)

  • Jeong Seung-U;Yoo So-Young;Kang Sook-Jin;Kim Mi-Kwang;Jang Hyun-Seon;Lee Kwang-Yong;Kim Byung-Ok;Kook Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • The purpose of this study is to develop the strain-specific PCR primers for the identification of prevotella inter-media ATCC 49046 which is frequently used in the pathogenesis studies of periodontitis. The Hind III-digested genomic DNA of P. intermedia ATCC 49046 were cloned by random cloning method. The specificity of cloned DNA fragments were determined by Southern blot analysis. The nucleotide sequence of cloned DNA probes was determined by chain termination method. The PCR primers were designed based on the nucleotide sequence of cloned DNA fragment. The data showed that Pig6 DNA probe were hybridized with the genomic DNA from P. intermedia strains (ATCC $25611^T$ and 49046) isolated from the Westerns, not the strains isolated from Koreans. The Pig6 DNA probe were consisted of 813 bp. Pig6-F3 and Pig6-R3 primers, designed base on the nucleotide Sequences Of Pig6 DNA Probe, were 3150 specific to the only both P. intermedia ATCC $25611^T$ and P. intermedia ATCC 49046. In the other hand, Pig6-60F and Pig6-770R primers were specific to the only P. intermedia ATCC 49046. The two PCR primer sets could detect as little as 4 pg of chromosomal DNA of P. intermedia. These results indicate that Pig6-60F and Pig6-770R primers have proven useful for the identification of P. intermedia ATCC 49046, especially with regard to the maintenance of the strain.

Characterization of Hrq1-Rad14 Interaction in Saccharomyces cerevisiae (효모에서 Hrq1과 Rad14의 상호작용에 대한 연구)

  • Min, Moon-Hee;Kim, Min-Ji;Choi, You-Jin;You, Min-Ju;Kim, Uy-Ra;An, Hyo-Bin;Kim, Chae-Hyun;Kwon, Chae-Yeon;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.95-100
    • /
    • 2014
  • Hrq1 is a novel member of RecQ helicase family, found in fungal genomes by bioinformatics analyses. It is most homologous to human RECQL4 and recent genetic and biochemical studies suggested that it may play roles in the maintenance of genome stability. In this study, we investigated yeast two-hybrid interactions between Hrq1 and the yeast genes homologous to the human genes that are known to interact with RECQL4. Among the 11 genes tested, Rad14, a nucleotide excision repair (NER) factor, was found to interact with Hrq1. In addition, pull-down assay with the purified proteins revealed direct protein-protein interaction between Hrq1 and Rad14. The yeast two-hybrid interaction was enhanced by the DNA damage induced by 4-nitroquinoline-1-oxide, which was dependent on the presence of Rad4, a key NER factor. These results suggest that Hrq1 may function in NER through interaction with Rad14.

Structural and Functional Analysis of a Forkhead Gene, fkhF, in a Filamentous Fungus Aspergillus nidulans (사상성 진균 Aspergillus nidulans에서 forkhead 유전자인 fkhF의 구조와 기능 분석)

  • Park, Mi-Hye;Kim, Hyoun-Young;Kim, Jong-Hwa;Han, Kap-Hoon
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.312-317
    • /
    • 2009
  • Genome analysis of a model filamentous fungus, Aspergillus nidulans, revealed that there are six putative forkhead genes. Among them, fkhF (AN8949.2) showed A. nidulans-specific. fkhF gene is located in chromosome VII and composed of 2,337 bp coding region for 778 amino acid. Since little is known about the involvement of the forkhead proteins in the developmental process of the filamentous fungi, including A. nidulans, we generated a deletion mutant of fkhF gene and analyzed. Deletion of fkhF resulted in less-dense conidiophore formation in a solid culture. However, the sexual developmental process or cleistothecia formation was normal. Furthermore, fkhF deletion mutant produced conidiophores and conidia under the submerged culture, suggesting that the fkhF gene is involved in repression of inappropriated induction and maturation of asexual developmental process but not in sexual development.

Draft genome sequences of Pseudomonas syringae pv. syringae strain WSPS007 causing bacterial shoot blight on apple (사과가지마름병원세균 Pseudomonas syringae pv. syringae WSPS007 균주의 유전체 해독)

  • Lim, Yeon-Jeong;Ryu, Duck Kyu;Kang, Min Kyu;Jeon, Yongho;Park, Duck Hwan
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.80-82
    • /
    • 2019
  • Pseudomonas syringae pv. syringae strain WSPS007 was isolated from infected twigs (Malus pumila) in 2013 in Yeongju, Gyeongbuk Province, Republic of Korea. Here, we report the draft genome sequence of WSPS007 with a chromosome size of 6,238,498 bp (59.04% G+C content). The genome comprises 5,379 CDS, 16 rRNA genes, and 65 tRNA genes. The P. syringae pv. syringae strain WSPS007 genome possesses an ice-nucleating activation (INA) gene and an antifreeze operon that may be related to frost damage by this pathogen. Thus, the genome sequence determined in this study will be useful in understanding the relationship between the outbreak of bacterial shoot blight disease and frost damage in northern Gyeongbuk Province.