Browse > Article
http://dx.doi.org/10.7845/kjm.2017.7034

Rapid bacterial identification using Raman spectroscopy  

No, Jee Hyun (Department of Environment Engineering, Yonsei University)
Lee, Tae Kwon (Department of Environment Engineering, Yonsei University)
Publication Information
Korean Journal of Microbiology / v.53, no.2, 2017 , pp. 71-78 More about this Journal
Abstract
Raman microspectroscopy is a promising tool for microbial analysis at single cell level since it can rapidly measure the cell materials including lipids, nucleic acids, and proteins by measuring the inelastic scattering of a molecule irradiated by monochromatic lights. Using Raman spectra provides high specificity and sensitivity in classification of bacteria at the strain level. In addition, a Raman approach coupled with stabled isotope such as $^{13}C$ and $^2H$ is able to detect and quantify general metabolic activity at single cell level. After bacterial detection process by Raman microspectroscopy, interested unculturable cell sorting and single cell genomics can be accomplished by combination with optical tweezer and microfluidic devices. In this review, the characteristics and applications of Raman microspectroscopy were reviewed and summarized in order to provide a better understanding of microbial analysis using Raman spectroscopy.
Keywords
bacterial detection; cell sorting; Raman microspectroscopy; single cell; stable isotope;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amann, R. and Fuchs, B.M. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339-348.   DOI
2 Ashton, L., Lau, K., Winder, C.L., and Goodacre, R. 2011. Raman spectroscopy: Lighting up the future of microbial identification. Future Microbiol. 6, 991-997.   DOI
3 Assaf, A., Cordella, C.B., and Thouand, G. 2014. Raman spectroscopy applied to the horizontal methods ISO 6579: 2002 to identify Salmonella spp. in the food industry. Anal. Bioanal. Chem. 406, 4899-4910.   DOI
4 Deng, H., Bloomfield, V.A., Benevides, J.M., and Thomas, G.J. 1999. Dependence of the Raman signature of genomic B‐DNA on nucleotide base sequence. Biopolymers 50, 656-666.   DOI
5 Berry, D., Mader, E., Lee, T.K., Woebken, D., Wang, Y., Zhu, D., Palatinszky, M., Schintlmeister, A., Schmid, M.C., Hanson, B. T., et al. 2015. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci. USA 112, E194-203.   DOI
6 Buijtels, P.C., Willemse-Erix, H.F., Petit, P.L., Endtz, H.P., Puppels, G.J., Verbrugh, H.A., van Belkum, A., van Soolingen, D., and Maquelin, K. 2008. Rapid identification of mycobacteria by Raman spectroscopy. J. Clin. Microbiol. 46, 961-965.   DOI
7 Chen, P., Tian, Q., Baek, S., Shang, X., Park, A., Liu, Z., Yao, X., Wang, J., Wang, X., and Cheng, Y. 2011. Laser Raman detection of platelet as a non-invasive approach for early and differential diagnosis of alzheimer's disease. Laser Phys. Lett. 8, 547.   DOI
8 Eder, S.H., Gigler, A.M., Hanzlik, M., and Winklhofer, M. 2014. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One 9, e107356.   DOI
9 Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vítek, P., and Jehlička, J. 2013. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the exomars mission. Astrobiology 13, 543-549.   DOI
10 Eichorst, S.A., Strasser, F., Woyke, T., Schintlmeister, A., Wagner, M., and Woebken, D. 2015. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. 91, fiv106.   DOI
11 Hoppe, P., Cohen, S., and Meibom, A. 2013. Nanosims: Technical aspects and applications in cosmochemistry and biological geochemistry. Geostand. Geoanal. Res. 37, 111-154.   DOI
12 Huang, W.E., Ward, A.D., and Whiteley, A.S. 2009b. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep. 1, 44-49.   DOI
13 Huang, W.E., Ferguson, A., Singer, A.C., Lawson, K., Thompson, I.P., Kalin, R.M., Larkin, M.J., Bailey, M.J., and Whiteley, A.S. 2009a. Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Appl. Environ. Microbiol. 75, 234-241.   DOI
14 Huang, W.E., Li, M., Jarvis, R.M., Goodacre, R., and Banwart, S.A. 2010. Shining light on the microbial world: The application of Raman microspectroscopy. Adv. Appl. Microbiol. 70, 153-186.
15 Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., and Wagner, M. 2007. Raman‐FISH: Combining stable‐isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878-1889.   DOI
16 Ibrahim, S.F. and van den Engh, G. 2007. Flow cytometry and cell sorting, pp. 19-39. Cell separation, Springer.
17 Klos, S., Kampe, B., Sachse, S., Rösch, P., Straube, E., Pfister, W., Kiehntopf, M., and Popp, J. 2013. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: A proof of principle study. Anal. Chem. 85, 9610-9616.   DOI
18 Kong, K., Kendall, C., Stone, N., and Notingher, I. 2015. Raman spectroscopy for medical diagnostics - from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 89, 121-134.   DOI
19 Lewis, I.R. and Edwards, H. 2001. Handbook of Raman spectroscopy: From the research laboratory to the process line, CRC Press.
20 Kubryk, P., Kölschbach, J.S., Marozava, S., Lueders, T., Meckenstock, R.U., Niessner, R., and Ivleva, N.P. 2015. Exploring the potential of stable isotope (resonance) Raman microspectroscopy and surface-enhanced Raman scattering for the analysis of microorganisms at single cell level. Anal. Chem. 87, 6622-6630.   DOI
21 Li, M., Canniffe, D.P., Jackson, P.J., Davison, P.A., FitzGerald, S., Dickman, M.J., Burgess, J.G., Hunter, C.N., and Huang, W.E. 2012. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J. 6, 875-885.   DOI
22 Munchberg, U., Rosch, P., Bauer, M., and Popp, J. 2014. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal. Bioanal. Chem. 406, 3041-3050.   DOI
23 Maquelin, K., Kirschner, C., Choo-Smith, L.P., van den Braak, N., Endtz, H.P., Naumann, D., and Puppels, G. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51, 255-271.   DOI
24 Meisel, S., Stöckel, S., Elschner, M., Melzer, F., Rösch, P., and Popp, J. 2012. Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. Appl. Environ. Microbiol. 78, 5575-5583.   DOI
25 Meisel, S., Stöckel, S., Elschner, M., Rösch, P., and Popp, J. 2011. Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Analyst. 136, 4997-5005.   DOI
26 Muhamadali, H., Chisanga, M., Subaihi, A., and Goodacre, R. 2015. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels. Anal. Chem. 87, 4578-4586.   DOI
27 Segata, N., Boernigen, D., Tickle, T.L., Morgan, X.C., Garrett, W.S., and Huttenhower, C. 2013. Computational meta'omics for microbial community studies. Mol. Syst. Biol. 9, 666.
28 Pahlow, S., Meisel, S., Cialla-May, D., Weber, K., Rosch, P., and Popp, J. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 89, 105-120.   DOI
29 Pichardo-Molina, J., Frausto-Reyes, C., Barbosa-Garcia, O., Huerta- Franco, R., Gonzalez-Trujillo, J., Ramirez-Alvarado, C., Gutierrez- Juarez, G., and Medina-Gutierrez, C. 2007. Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients. Lasers Med. Sci. 22, 229-236.   DOI
30 Rosch, P., Harz, M., Schmitt, M., Peschke, K.D., Ronneberger, O., Burkhardt, H., Motzkus, H.W., Lankers, M., Hofer, S., and Thiele, H. 2005. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations. Appl. Environ. Microbiol. 71, 1626-1637.   DOI
31 Sharma, B., Frontiera, R.R., Henry, A.I., Ringe, E., and Van Duyne, R.P. 2012. SERS: Materials, applications, and the future. Mater. Today 15, 16-25.   DOI
32 Silge, A., Schumacher, W., Rosch, P., Da Costa Filho, P.A., Gerard, C., and Popp, J. 2014. Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level. Syst. Appl. Microbiol. 37, 360-367.   DOI
33 Smith, G.D. and Clark, R.J. 2004. Raman microscopy in archaeological science. J. Archaeol. Sci. 31, 1137-1160.   DOI
34 Wang, Y., Huang, W.E., Cui, L., and Wagner, M. 2016. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34-42.   DOI
35 Stockel, S., Kirchhoff, J., Neugebauer, U., Rosch, P., and Popp, J. 2016. The application of Raman spectroscopy for the detection and identification of microorganisms. J. Raman Spectrosc. 47, 89-109.   DOI
36 Stepanauskas, R. and Sieracki, M.E. 2007. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl. Acad. Sci. USA 104, 9052-9057.   DOI
37 Tringe, S.G., Von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H.W., Podar, M., Short, J.M., Mathur, E.J., and Detter, J.C. 2005. Comparative metagenomics of microbial communities. Science 308, 554-557.   DOI
38 van de Vossenberg, J., Tervahauta, H., Maquelin, K., Blokker-Koopmans, C.H., Uytewaal-Aarts, M., van der Kooij, D., van Wezel, A.P., and van der Gaag, B. 2013. Identification of bacteria in drinking water with Raman spectroscopy. Anal. Methods 5, 2679-2687.   DOI
39 van Manen, H.J., Lenferink, A., and Otto, C. 2008. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy. Anal. Chem. 80, 9576-9582.   DOI
40 Wang, Y., Ji, Y., Wharfe, E.S., Meadows, R.S., March, P., Goodacre, R., Xu, J., and Huang, W.E. 2013. Raman activated cell ejection for isolation of single cells. Anal. Chem. 85, 10697-10701.   DOI
41 Williams, A.C. and Edwards, H.G.M. 1994. Fourier transform raman spectroscopy of bacterial cell walls. J. Raman Spectrosc. 25, 673-677.   DOI
42 Zengler, K. 2009. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73, 712-729.   DOI
43 Xie, C., Mace, J., Dinno, M., Li, Y., Tang, W., Newton, R., and Gemperline, P. 2005. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal. Chem. 77, 4390-4397.   DOI
44 Xie, X.S., Yu, J., and Yang, W.Y. 2006. Living cells as test tubes. Science 312, 228-230.   DOI