• Title/Summary/Keyword: 미생물전기분해전지

Search Result 17, Processing Time 0.021 seconds

Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells (미생물연료전지에서 전극구조가 기질분해에 미치는 영향 연구)

  • Shin, Yujin;Lee, Myoung-Eun;Park, Chi-Hoon;Ahn, Yongtae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.489-493
    • /
    • 2017
  • Microbial fuel cells (MFC) are bio-electrochemical processes that can convert various organic materials present in wastewater into electrical energy. For scaling-up and practical application of MFC, it is necessary to investigate the effect of anode size, electrode distance, and total area of anode on substrate degradation. Spaced electrode assembly (SPA) type microbial fuel cell with multiple anodes treating domestic wastewater was used for simulation. According to computer simulation results, the shorter the distance between electrodes than the size of single electrode, the faster the substrate degradation rate. Particularly, when the total area of the anode is large, the substrate decomposition is the fastest. In this study, it was found that the size of the anode and the distance between the electrodes as well as the cathode electrode, which is known as the rate-limiting step in the design of the microbial fuel cell process, are also important factors influencing the substrate degradation rate.

Analysis of Microbial Communities in Aquatic Sediment Microbial Fuel Cells Injected with Glucose (포도당을 주입한 수중퇴적물을 이용한 연료전지시스템에 있어서 미생물군집 분석)

  • Kim, Min;Ekpeghere, Kalu I.;Kim, Soo-Hyeon;Chang, Jae-Soo;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.254-261
    • /
    • 2012
  • The purpose of this research was to optimize electric current production of sediment microbial fuel cells by injecting glucose and to investigate its impact on microbial communities involved. It was shown that injection of proper concentration of glucose could increase electric current generated from sediment microbial fuel cells. When 1,000 mg/L of glucose, as opposed to higher concentrations, was injected, electric current increased up to 3 times. This increase is mainly attributed to the mutual relationship between fermenting bacteria and exoelectrogenic bacteria. Here the organic acids generated by fermenting bacteria could be utilized by exoelectrogenic bacteria, removing feedback inhibition caused by the organic acids. When glucose was injected, the population of Clostridium increased as to ferment injected glucose. Glucose fermentation can have either a positive or negative effect on electric current generation. When exoelectrogenic bacteria may readily utilize the end-product, electric current could increase. However, when the end-product was not readily removed, then detrimental chemical reactions (pH decrease, methane generation, organic acids accumulation) occurred: exoelctrogenic bacteria population declined and non-microbial fuel cell related microorganisms prospered. By injecting a proper concentration of glucose, a mutual relationship between fermenting bacteria, such as Clostridium, and exoelectrogenic bacteria, such as Geobacter, should be fulfilled in order to increase electricity production in mixed cultures of microorganisms collected from the aquatic sediments.

Evaluation of possibility using cobalt poly-pyrrole carbon as an alternative oxygen reduction catalyst in microbial fuel cells (미생물 연료전지 내 Cobalt poly-pyrrole carbon의 산소환원촉매로서의 평가)

  • Kwon, Jae-Hyeong;Joo, Jin-Chul;Ahn, Chang-Hyuk;Song, Ho-Myeon;Ahn, Ho-Sang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.477-477
    • /
    • 2012
  • 미생물 연료전지는 정부가 추진하고 있는 신성장 동력사업의 녹색성장 정책에 부합하는 환경융합 신기술로써 일상생활에서 배출되는 하 폐수와 같은 유기물질을 전자공여체로 이용하여 전기에너지를 생산 할 수 있다는 점에서 각광받고 있다. 미생물 연료전지는 산화전극부의 미생물이 공급된 유기물질 을 분해하여 전자와 수소이온을 생성시키며 이들은 산소가 존재하는 환원전극부로 이동하여 물로 환원 됨 으로써 전기를 생성한다. 전기 화학적 성능의 향상을 위해 미생물 연료전지에서는 환원전극부에 서의 산소와 전자 및 수소이온의 빠른 환원반응을 유도해 주는 Pt촉매를 이용한다. 하지만 고가의 Pt 촉매는 미생물 연료전지의 현장적용을 위한 규모확장 시 초기비용이 증가되는 문제점을 초래한다. 이에 미생물 연료전지의 대체촉매 개발에 대한 많은 연구가 진행되고 있다. 화학적 연료전지에 관한 논문에서 연료전지의 촉매로 산소 환원반응에 높은 성능을 보이는 Co-N/C 형태의 Cobalt poly-pyrrole carbon가 제시 되었다. 이는 가격적인 측면에서는 Pt촉매의 약1/10배 정도 수준이지만 셀 성능은 Pt촉매의 95%정도의 효율을 보인다는 측면에서 향후 Pt 대체촉매로 가능성을 보여주는 새로운 비금속 촉매물질이다. Cobalt poly-pyrrole carbon이 Pt-catalsyt 셀 전압 성능 대비 약 66 %의 효율을 보였고 내부저항과 최대전력 밀도에 있어서도 촉매를 사용하지 않은 경우와 비금속 촉매의 성능보다 높음을 알 수 있었다. 본 연구는 Pt-catalsyt를 대체할 수 있는 저가의 산소환원 촉매물질 발굴을 위해 미생물연료전지에서 사용된 전례가 없으며 현재 화학전지의 촉매로 널리 쓰이고 있는 Cobalt poly-pyrrole carbon의 산소환원 촉매로써의 이용가능성을 평가하기 위해 실시되었으며, 평가한 결과는 첫 번째로 Cobalt poly-pyrrole carbon을 사용한 경우가 촉매를 사용하지 않은 경우와 비금속 촉매보다 환원 전극부에서의 원활한 환원작용이 진행되고 있음을 추측할 수 있으며 Pt-catalyst와 비교하였을 때 성능 대비 저렴한 가격으로 가격 경쟁력에 있어서 우월하다고 판단되었고 두 번째로 전기화학적 성능평가 및 EIS를 이용한 환원전극부의 내부저항 평가를 실시한 결과 셀 전압에 있어서 가장 많은 도말량 ($2.0mg/cm^2$)이 높은 성능을 보이고 있음을 알 수 있었다.

  • PDF

Feasibility test of treating slaughterhouse by-products using microbial electrolysis cells (미생물전기분해전지를 이용한 도축부산물 처리 가능성 평가)

  • Song, Geunuk;Baek, Yunjeong;Seo, Hwijin;Kim, Daewook;Shin, Seunggu;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • The aim of this study is to evaluate the possibility of treating slaughterhouse by-products using microbial electrolysis cells (MECs). The diluted pig liver was fed to MEC reactors with the influent COD concentrations of 772, 1,222, and 1,431 mg/L, and the applied voltage were 0.3, 0.6, and 0.9 V. The highest methane production of 5.9 mL was obtained at the influent COD concentration of 1,431 mg/L and applied voltage of 0.9 V. In all tested conditions, COD removal rate was increased as the influent COD concentration increased with average removal rate of 62.3~81.1%. The maximum methane yield of 129~229 mL/g COD was obtained, which is approximately 80% of theoretical maximum value. It might be due to the bioelectrochemical reaction greatly increased the biodegradability of pig liver. Future research is required to improve the methane yield and digestibility through optimizing the reactor design and operating conditions.

Measurement of Activation and Ohmic Losses using a Current Interruption Technique in a Microbial Fuel Cell (미생물연료전지(MFC)에서 전류차단법(current interrupt technique)을 이용한 활성화전압손실(activation loss)과 저항전압손실(Ohmic loss)의 측정)

  • Park, Kyung-Won;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Electricity can be directly generated from organic matter even wastewaters using a microbial fuel cell. To achieve high power in MFCs, finding factors decreasing activation and Ohmic losses is very important. In this study we determined activation loss at the anode and cathode and Ohmic loss using the current interruption technique in a H-type MFC. Activation loss at the cathode was four times higher that that of anode activation loss even if pt-coated carbon (0.5 $mg/cm^2$;10%Pt) was used as the cathode. Ohmic loss determined using current interruption technique (1146 ${\Omega}$) was almost same as the internal resistance (1167 ${\Omega}$) measured using AC impedance. The sum of activation losses at the anode and cathode was the same as the value of activation loss of the cell.

Startup of Microbial Electrolysis Cells with different mixing ratio of Anaerobic Digested Sludge and Buffer solution (혐기성소화 슬러지 비율에 따른 미생물전기분해전지의 식종 특성)

  • Song, Geunwuk;Baek, Yunjeong;Seo, Hwijin;Jang, Hae-Nam;Chung, Jae Woo;Lee, Myoung-Eun;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • In this study, the influence of anaerobic digested sludge and 50 mM PBS (phosphate buffer solution) mixing ratio (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7) on hydrogen production and inoculation period were examined. MECs were operated in fed-batch mode with an applied voltage of 0.9 V. As a result, in the 1:1 mixing ratio reactor, 9.8-20.9 mL of hydrogen was produced with the highest hydrogen content of 66.8-79.6%. Hydrogen gas production and power density increased from after 12 days of inoculation for the 1:1 mixing ratio reactor. In case of 1:2, 1:3 and 1:4 mixing ratio reactor, the hydrogen gas production was 3.7-7.1 mL and the hydrogen gas content was 5.8-65.8%. The hydrogen gas yield in 1:5, 1:6 and 1:7 ratio reactors, was 0.50-0.69 mL and hydrogen content range was 1.8-7.1%. The mixing ratio was found to be suitable for hydrogen production and inoculation period by mixing ratio up to 1:4.

Influence of Electrode Spacing on Methane Production in Microbial Electrolysis Cell Fed with Sewage Sludge (하수슬러지를 기질로 하는 미생물전기분해전지에서 전극간 거리가 메탄 생산에 미치는 영향)

  • Im, Seongwon;Ahn, Yongtae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.682-688
    • /
    • 2015
  • Effect of electrode spacing on the performance of microbial electrolysis cells(MECs) for treating sewage sludge was investigated through lab scale experiment. The reactors were equipped with two pairs of electrodes that have a different electrode spacing (16, 32 mm). Shorter electrode distance improved the overall performance of MEC system. With the 16 mm of electrode distance, the current density was $3.04{\sim}3.74A/m^3$ and methane production was $0.616{\sim}0.804Nm^3/m^3$, which were higher than those obtained with 32 mm of electrode spacing ($1.50{\sim}1.82A/m^3$, $0.529{\sim}0.664Nm^3/m^3$). The COD removal was in the range of 34~40%, and the VSS reduction ranged 32~38%. As the current production increased, VSS reduction and methane production were increased possibly due to the improved bioelectrochemical performance of the system. Methane production was more affected by current density than VSS reduction. These results imply that the reducing the electrode spacing can enhance the methane production and recovery from sewage sludge with the decreased internal resistance, however, it was not able to improve VSS reduction of sewage sludge.

Effect of substrate concentration on the operating characteristics of microbial electrolysis cells (기질 농도에 따른 미생물전기분해전지의 운전 특성)

  • Hwijin Seo;Jaeil Kim;Seo Jin Ki;Yongtae Ahn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.41-49
    • /
    • 2023
  • This study examined the effect of input substrate concentration on hydrogen production of microbial electrolysis cells. To compare the performance of MEC according to the input substrate concentration, six laboratory-scale MEC reactors were operated by sequentially increasing the input substrate concentration from 2 g/L of sodium acetate, to 4 g/L, and 6 g/L. The current density, hydrogen production, and SCOD removal rate were analyzed, and energy efficiency and cathodic hydrogen recovery were calculated to compare the performance of MEC. The maximum volumetric current density was obtained at 4 g/L condition (76.3 A/m3) and it decreased to 19.0 A/m3, when the input concentration was increased to 6 g/L, which was a 75% decrease compared to the 4 g/L input condition. Maximum hydrogen production was obtained also at 4 g/L condition (47.3 ± 16.8 mL), but maximum hydrogen yield was obtained at 2 g/L input condition (1.1 L H2/g CODin). Energy efficiencies were also highest in 2 g/L condition; the lowest result was observed at 6 g/L condition. Maximum electrical energy efficiency was 76.4%, and the maximum overall energy efficiency was 39.7% at 2 g/L condition. However, when the substrate concentration increased to 6 g/L, the performance was drastically decreased. Cathodic hydrogen recovery also showed a similar tendency with energy efficiency, with the lowest concentration condition showing the best performance. It can be concluded that operating at low input substrate concentration might be better when considering not only hydrogen yield but also energy efficiency.

Current Research Trends in Microbial Fuel Cell Based on Polymer Electrolyte Membranes (고분자 전해질 분리막 기반 미생물 연료전지의 최근 연구동향)

  • Choi, Tae-Hwan;Kim, Hyo-Won;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.173-184
    • /
    • 2010
  • Microbial fuel cell (MFC) is a promising renewable energy source that can generate electrical energy from organic wastes using microbe. This technology has been regarded as a future green alternative energy in that MFC makes use of organic-rich wastewater and also reduces waste sludges as well as produces electricity. To be practically realized, however, achieving higher power density than now is demanded, which may be possible by eliminating various negative factors to act as resistances in MFC operations. For instance, highly activated microbes, highly conductive electrode materials, and fast electron transfer between microbes and electrodes can lead to MFC with high power density. In particular, polymer electrolyte membranes are also a key component for improved MFC performance.

Sustainability Indices (=Green Star) for Microbial Fuel Cell (미생물 연료전지 영속발전 지표개발)

  • Song, Ha-Geun;KOO, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.47-52
    • /
    • 2015
  • A microbial fuel cell (MFC) is a device that can be obtained electricity from a variety of organic through the catalytic reaction of the microorganism. The MFC can be applied to various fields, and research is required to promote the performance of the microbial fuel cell for commercialization. The lower performance of an MFC is due to oxygen reduction at the cathode and the longer time of microbial degradation at anode. The MFC amount of power is sufficient but, in consideration of many factors, as a renewable energy, now commonly power density as compared to Nafion117 it is an ion exchange membrane used is PP (Poly Propylene) from 80 to about 11 fold higher, while reducing the cost to process wastewater is changed to a microporous non-woven fabric of a low cost, it may be energy-friendly environment to generate electricity. All waste, in that it can act as a bait for microorganisms, sustainability of the microbial fuel cell is limitless. The latest research on the optimization and performance of the operating parameters are surveyed and through the SSaM-GG(Smart, Shared, and Mutual- Green Growth) or GG-SSaM(Green Growth - Smart, Shared, and Mutual) as the concept of sustainable development in MFC, the middle indices are developed in this study.