Browse > Article

Current Research Trends in Microbial Fuel Cell Based on Polymer Electrolyte Membranes  

Choi, Tae-Hwan (Department of Energy Engineering Hanyang University)
Kim, Hyo-Won (Department of Energy Engineering Hanyang University)
Park, Ho-Bum (Department of Energy Engineering Hanyang University)
Publication Information
Membrane Journal / v.20, no.3, 2010 , pp. 173-184 More about this Journal
Abstract
Microbial fuel cell (MFC) is a promising renewable energy source that can generate electrical energy from organic wastes using microbe. This technology has been regarded as a future green alternative energy in that MFC makes use of organic-rich wastewater and also reduces waste sludges as well as produces electricity. To be practically realized, however, achieving higher power density than now is demanded, which may be possible by eliminating various negative factors to act as resistances in MFC operations. For instance, highly activated microbes, highly conductive electrode materials, and fast electron transfer between microbes and electrodes can lead to MFC with high power density. In particular, polymer electrolyte membranes are also a key component for improved MFC performance.
Keywords
microbial fuel cell; polymer electrolyte membrane; wastewater treatment; microbe; renewable energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Schaetzle, F. Barriere, and K. Baronian, "Bac-teria and yeasts as catalysts in microbial fuel cells : electron transfer from micro-organisms to electro-des for green electricity", Energy Environ. Sci., 1, 607 (2008).   DOI   ScienceOn
2 B. E. Logan and J. M. Regan, "Electricity-produc-ing bacterial communities in microbial fuel cells", Trends Microbiol., 14(12), 512 (2006).   DOI   ScienceOn
3 H. Liu and B. E. Logan, "Electricity generation us-ing an air-cathode single chamber microbial fuel cell in the presence and absence of a proton ex-change membrane", Environ. Sci. Technol., 38(14), 4040 (2004).   DOI   ScienceOn
4 B. E. Logan, "Materials and configurations for scal-able microbial fuel cells", Provisional patent appli-cation, PST20918, PSU2006-3173, Penn Statte University (2005).
5 Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, "The Upflow Microbial Fuel Cell with an Interior Cathode : Assessment of the Internal Resistance by Impedance Spectroscopy", Environ. Sci. Technol., 40(17), 5212 (2006).   DOI   ScienceOn
6 B. E. Logan, S. Cheng, V. Watson, and G. Estadt, "Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells", Environ. Sci. Technol., 41(9), 3341 (2007).   DOI   ScienceOn
7 P. Aelterman, K. Rabaey, T. H. Pham N. Boon, and W. Verstraete, "Continuous electricity gen-eration at high voltages and currents using stacked microbial fuel cells", Environ. Sci. Technol., 40(10), 3388 (2006).   DOI   ScienceOn
8 S. E. Oh and B. E. Logan, "Voltage reversal dur-ing microbial fuel cell stack operation", J. Power. Sour., 167(1), 11 (2007).   DOI   ScienceOn
9 S. K. Chaudhuri and D. R. Lovley, "Electricity ge-neration by direct oxidation of glucose in media-torless microbial fuel cells", Nat. Biotechnol., 21(10), 1229 (2003).   DOI   ScienceOn
10 D. H. Park and J. G. Zeikus, "Impact of electrode composition on electricity generation in a singlecompartment fuel cell using Shewanella putrefacians", Appl. Microbiol. Biotechnol., 59, 58 (2002).   DOI   ScienceOn
11 S. Cheng, H. Liu, and B. E. Logan, "Increased performance of single-chamber microbial fuel cells using an improved cathode structure", Electrochem. Commun., 8(3), 489 (2006).   DOI   ScienceOn
12 S. Cheng, H. Liu, and B. E. Logan, "Power den-sities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40(1), 364 (2006).   DOI   ScienceOn
13 K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, "Biofuel cells select for micro-bial consortia that self-mediate electrontransfer", Appl. Environ. Microbiol., 70(9), 5373 (2004).   DOI   ScienceOn
14 J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41(3), 1004 (2007).   DOI   ScienceOn
15 B. E. Logan, C. Murano, K. Scott, N. D. Gray, and I. M. Head, "Electricity generation from cysteine in a microbial fuel cell", Water Res., 39(5), 942 (2005).   DOI   ScienceOn
16 B. E. Logan and J. M. Regan, "Microbial fuel cells-challenges and applications", Environ. Sci. Technol., 40(17), 5172 (2006).   DOI   ScienceOn
17 D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus, "Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production", Appl. Environ. Microbiol., 65(7), 2912 (1999).
18 K. Rabaey and W. Verstraete, "Microbial fuel cells : novel biotechnology for energy generation", Trends Biotechnol., 23(6), 291 (2005).   DOI   ScienceOn
19 D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, "Electrode-reducing microorganisms that harvest energy from marine sediments", Science, 295(5554), 483 (2002).   DOI   ScienceOn
20 B. E. Logan, "Extracting hydrogen and electricity from renewable resources", Environ. Sci. Technol., 38(9), 160A (2004).   DOI   ScienceOn
21 K. Rabaey, N. Boon, M. Hofte, and M. Verstraete, "Microbial phenazine production enhances electron transfer in biofuel cells", Environ. Sci. Technol., 39(9), 3401 (2005).   DOI   ScienceOn
22 http://www.ogc.co.jp/e/products/carbon-f/donacarbo_ paper.html.
23 http://en.thrive-metal.com/products_detail/&productId=02ec3b0b-af85-4740-aa01-1bfdc5c72481&comp_stats=comp-FrontProducts_list01-004.html.
24 http://www.millrose.com/carbon_fiber.htm.
25 A. Rinaldi, B. Mecheri, V. Garavaglia, S. Licoccia, P. D. Nardo, and E. Traversa, "Engineering materi-als and biology to boost performance of microbial fuel cells : a critical review", Energy Environ. Sci., 1, 417 (2008).   DOI   ScienceOn
26 Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pin-chuk, K. Watanabe, S. Ishii, B. E. Logan, K. A. Nealson, and J. K. Fredrickson, "Electrically con-ductive bacterial nanowires produced by Shewanel-la oneidensis strain MR-1 and other micro-organisms", PNAS, 103(30), 11358 (2006).
27 G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, "Extracellular electrontransfer via microbial nano-wires", Nature, 435(7045), 1098 (2005).   DOI   ScienceOn
28 H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, "A mediator-less micro-bial fuel cell using a metalreducing bacterium, Shewanella putrefaciens", Enzyme Microb. Technol., 30(2), 145(2002).   DOI   ScienceOn
29 F. Zhao, R. C. T. Slade, and J. R. Varcoe, "Tech-niques for the study and development of microbial fuel cells : an electrochemial perspective", Chem. Soc. Rev., 38, 1926 (2009).   DOI   ScienceOn
30 D. R. Bond and D. R. Lovley, "Electricity pro-duction by Geobacter sulfurreducens attached to electrodes", Appl. Environ. Microbiol., 69(3), 1548 (2003).   DOI   ScienceOn
31 A. Shantaram, H. Beyenal, R. Raajan, A. Veluchamy, and Z. Lewandowski, "Wireless sen-sors powered by microbial fuel cells", Environ. Sci. Technol., 39(13), 5037 (2005).   DOI   ScienceOn
32 Future Eco, "Generate Power in the Wastewater", Future Eco Magazine, 3, 100 (2010), (http://www.ecofuture.co.kr).
33 B. E. Logan, "Microbial Fuel Cells", John Willy & Sons (2008).
34 A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. R. Rozendal, and C. J. N. Buisman, "A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells", Environ. Sci. Technol., 40(17), 5200 (2006).   DOI   ScienceOn
35 M. T. Madigan and J. M. Martinko, "Brock Biology of Microorganisms", Person Education Inc., Upper Saddle River, NJ. (2006).
36 S. K. Lower, M. F. Hochella, and T. J. Beveridge, "Bacterial recognition of mineral surfaces : nano-scale interactions between Shewanella and alpha-FeOOH", Science, 292(5520), 1360 (2001).   DOI   ScienceOn