DOI QR코드

DOI QR Code

Feasibility test of treating slaughterhouse by-products using microbial electrolysis cells

미생물전기분해전지를 이용한 도축부산물 처리 가능성 평가

  • Song, Geunuk (Department of Energy Engineering, Gyeongsang National University) ;
  • Baek, Yunjeong (Department of Energy Engineering, Gyeongsang National University) ;
  • Seo, Hwijin (Department of Energy Engineering, Gyeongsang National University) ;
  • Kim, Daewook (Department of Energy Engineering, Gyeongsang National University) ;
  • Shin, Seunggu (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Ahn, Yongtae (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
  • 송근욱 (경상국립대학교 에너지공학과) ;
  • 백윤정 (경상국립대학교 에너지공학과) ;
  • 서휘진 (경상국립대학교 에너지공학과) ;
  • 김대욱 (경상국립대학교 에너지공학과) ;
  • 신승구 (경상국립대학교 에너지공학과, 미래융복합기술연구소) ;
  • 안용태 (경상국립대학교 에너지공학과, 미래융복합기술연구소)
  • Received : 2021.04.13
  • Accepted : 2021.06.16
  • Published : 2021.06.30

Abstract

The aim of this study is to evaluate the possibility of treating slaughterhouse by-products using microbial electrolysis cells (MECs). The diluted pig liver was fed to MEC reactors with the influent COD concentrations of 772, 1,222, and 1,431 mg/L, and the applied voltage were 0.3, 0.6, and 0.9 V. The highest methane production of 5.9 mL was obtained at the influent COD concentration of 1,431 mg/L and applied voltage of 0.9 V. In all tested conditions, COD removal rate was increased as the influent COD concentration increased with average removal rate of 62.3~81.1%. The maximum methane yield of 129~229 mL/g COD was obtained, which is approximately 80% of theoretical maximum value. It might be due to the bioelectrochemical reaction greatly increased the biodegradability of pig liver. Future research is required to improve the methane yield and digestibility through optimizing the reactor design and operating conditions.

본 연구는 미생물전기분해전지를 이용하여 도축부산물의 처리 가능성을 평가하였다. 도축부산물 희석액을 772, 1,222, 1,431 mg COD/L의 농도로 반응조에 주입하였으며 각 유입농도에서 인가전압 변화 (0.3, 0.6, 0.9 V)에 따른 COD 제거 및 메탄가스 발생 특성을 평가하였다. 메탄가스 발생량은 유입 COD 농도 1,431 mg/L와 인가전압 0.9 V 조건에서 최대치를 얻을 수 있었다. 모든 인가전압 조건에서 주입농도가 증가할수록 COD 제거율이 증가하였으며 평균 COD 제거율은 62.3~81.1% 이었다. 돼지 간은 난분해성 성분이 많아 혐기성소화에 적절하지 않은 기질이나 미생물전기분해전지의 생물전기화학반응을 통해 잠재적 메탄 수율의 80%인 129~229 mL/g COD의 높은 수율을 얻을 수 있었던 것으로 판단된다. 향후 반응조 형상 및 운전조건 최적화 등을 통하여 기질의 소화속도와 소화율을 보다 개선할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2020년도 경상국립대학교 교원연구활성화 지원사업의 예산지원으로 수행되었음.

References

  1. Hejnfelt, A. and Angelidaki, I., "Anaerobic digestion of slaughterhouse by-products", Biomass and Bioenergy, 33(8), pp. 1046~1054. (2009). https://doi.org/10.1016/j.biombioe.2009.03.004
  2. Moukazis, I., Pellera, F.-M. and Gidarakos, E., "Slaughterhouse by-products treatment using anaerobic digestion", Waste Management, 71, pp. 665~662. (2017).
  3. Livestock Product Safety Management System Homepage, https://www.lpsms.go.kr, December (2020).
  4. Korea Agricultural Statistics Service Homepage, https://kass.mafra.go.kr/kass/ka/main.do, December (2020).
  5. Bouskova, A., Dohanyos, M., Schmidt, J. E. and Angelidaki, I., "Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge", Water Research, 39(8), pp. 1481~1488. (2005). https://doi.org/10.1016/j.watres.2004.12.042
  6. Pack, C., Lee, C., Kim, S., Chen, Y. and Chase, H. A., "Upgrading of anaerobic digestion by incorporating two different hydrolysis processes", Bioscience and Bioengineering, 100(2), pp. 164~167. (2005). https://doi.org/10.1263/jbb.100.164
  7. Huang, W., Zhao, Z., Yuan, T., Huang, W., Lei, Z. and Zhang, Z., "Low-temperature hydrothermal pretreatment followed by dry anaerobic digestion: A sustainable strategy for manure waste management regarding energy recovery and nutrients availability", Waste Management, 70, pp. 255~262. (2017). https://doi.org/10.1016/j.wasman.2017.09.011
  8. Perez, D., Lie, T. T. and Weber, C. C., "Operationalization of a microbial electrolysis cell: The interaction of the primary factors for energy storage efficiency", Bioresource Technology, 326, pp. 124788. (2021). https://doi.org/10.1016/j.biortech.2021.124788
  9. Van Eerten-Jansen, M. C. A. A., Heijne, A. T., Buisman, C. J. N. and Hamelers, H. V. M., "Microbial electrolysis cells f or production of methane f rom CO2: long-term performance and perspectives", Int. J. Energy Res., 36(6), pp. 809~819. (2012). https://doi.org/10.1002/er.1954
  10. Song, G. W., Baek, W. J., Seo, H., Jang, H., Chung, J. W., Lee, M. E. and Ahn, Y., "Startup of microbial electrolysis cells with different mixing ratio of anaerobic digested sludge and buffer solution", Korea Organic Resources Recycling Association, 27(4), pp. 51~59. (2019).
  11. Zhang, Y. and Angelidaki, I., "Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges", Water Research, 56, pp. 11~25. (2014). https://doi.org/10.1016/j.watres.2014.02.031
  12. Liu, H., Grot, S. and Logan, B. E., "Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol", Environ, Sci. Technol., 39(11), pp. 4317~4320. (2005). https://doi.org/10.1021/es050244p
  13. Yu, Z., Leng, X., Zhao, S., Ji, J., Zhou, T., Khan, A., Kakde, A., Liu, P. and Li, X., "A review on the applications of microbial electrolysis cells in anaerobic digestion", Bioresource Technology, 255, pp. 340~348. (2018). https://doi.org/10.1016/j.biortech.2018.02.003
  14. Ding, A., Yang, Y., Sun, G. and Wu, D., "Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC)", Chemical Engineering Journal, 283, pp. 260~265. (2016). https://doi.org/10.1016/j.cej.2015.07.054
  15. Im, S. W., Ahn, Y. and Chung, J. W., "Influence of Electrode Spacing on Methane Production in Microbial Electrolysis Cell Fed with Sewage Sludge", J. Korean Soc. Environ. Eng., 37(12), pp. 682~688. (2015). https://doi.org/10.4491/KSEE.2015.37.12.682
  16. Asztalos, J. R. and Kim, Y., "Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature", Water Research, pp. 503~512. (2015).
  17. Kim, D. W., Yu, S. I., Bae, I. H., Rhee, C., Lee, M. E., Shin, J. H. and Shin, S. G., "Assessment of Bioenergy Potential of Slaughterhouse By-products through Anaerobic Digestion", Korean Society Of Environmental Engineers, 41(12), pp. 677~685. (2019). https://doi.org/10.4491/KSEE.2019.41.12.677
  18. Baird, R. and Bridgewater, L., Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association (AHPA), Washington, DC. USA. (2018).
  19. Sun, R., Xing, D., Jia, J., Liu, Q., Zhou, A., Bai, S. and Ren, N., "Optimization of high-solid waste activated sludge concentration for hydrogen production in microbial electrolysis cells and microbial community diversity analysis", International Journal of Hydrogen Energy, 39(35), pp. 19912~19920. (2014). https://doi.org/10.1016/j.ijhydene.2014.09.163