• Title/Summary/Keyword: 미문상화강암

Search Result 18, Processing Time 0.034 seconds

Petrologic and Geomorphologic Characteristics of Micrographic Granite in the Ijin-ri Area, Ulsan (울산 이진리 미문상화강암의 암석학적 및 지형학적 특성 연구)

  • Kim, Sun-Woong;Kim, Haang-Mook;Hwang, Byoung-Hoon;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.211-221
    • /
    • 2009
  • This study illustrates the relationship between the petrographic characteristics of micrographic granite and the topographic features around Ijin-ri. Light-brown to light- gray granite is composed of intergrown fine-grained quartz + orthoclase, displaying micrographic textures. Miarolitic cavities are abundant. Many micro-landforms including tor, tafoni, and gnamma occurred in the micrographic granite of the study area. Tafoni is dominant in the north and gnamma is dominant in south. From our study of the occurrence and textural properties, two alteration zones were clearly identified; one is an external zone (A) characterized by abundant of small sized miarolitic cavities and the other is an internal zone (B) having them less than zone A. The former is dominant in north, and the latter is dominant in south. Particular geomorphologic features such as fluting cores and raised rims are present in the Ijin-ri area. This suggests that development of miarolitic cavities played an important role in the formation of the various geomorphologic features. Consequently, the petrogenesis of the micrographic granite is related to geomorphologic features in the external zone typified by abundant tafoni such as the tiger rock, and the formation of a platform as micro-landforms is influenced by thetextural differences of host rock in the internal zone.

Crystal Morphology of Zircon in Granitoids from the Mt. Keumjeong District, Pusan, Korea (부산 금정산 지역 화강암류의 저어콘에 대한 형태학적 연구)

  • 이윤종;윤성효;김상욱;고인석;황상구;정원우;김중욱;이철락;하야시마사오
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.71-80
    • /
    • 1999
  • We report zircon morphology of granitoids in the Mt. Keumjeong district, Pusan. There are a series of granitoids in the study area of the late Cretaceous: granodiorite, hornblende granite, adamellite, tonalite, biotite granite, and micrographic granite. Generally, the shapes of zircon crystals are short prismatic to middle prismatic and are dominant in {loo) prism and {101) pyramid in total average morphological data of the granitoids. The crystal forms of zircon in the granitoids can be distinguished by the PPEF diagram and the prism index (PI). The prism index values of zircon crystal forms in granodoirite and hornblende granite are higher than those of tonalite and micrographic granite. The finishing temperature range ($820~800^{\circ}C$) for crystallization of zircon crystals in granodoirite and hornblende granite is higher than the temperature ($790~770^{\circ}C$) at which the zircon crystals are created in tonalite and micrographic granite. The last differentiates (biotite granite and micrographic granite) have mainly intermediate zircon ({110)={100)) crystals, respectively. As differentiation proceeds, the zircons of granitoids become from short prismatic to middle prismatic in the each granitoid types.

  • PDF

Petrographic Characteristics and Deterioration Evaluation of the Rock-carved Seated Buddha at Bugmireugam Hermitage in Daeheungsa Temple of Haenam, Korea (해남 대흥사 북미륵암 마애여래좌상의 암석기재적 특성과 손상도 평가)

  • Cho, Ji Hyun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.617-626
    • /
    • 2019
  • In this study, we investigated the petrographic characteristics and physical property of the Rock-carved Seated Buddha at Bugmireugam hermitage of Daeheungsa temple in Haenam. The Buddha Statue was carved on micrographic granite, and the rock was composed of the fine quartz encircled by orthoclase. The results of diagnosis for deterioration evaluation have shown a highly damage rate of black contaminants (8.4%) and crack index (6.6). The ultrasonic velocity have detected SW (slightly weathered) grade of weathering coefficient (mean 0.18). Various weathering factor on the surface of the Buddha Statue was affected by precious shelter, and physical property with ultrasonic was directly influenced by the structural characteristics and fissure of host rock.

Rb-Sr Whole-rock Isochron Age and Petrology of the Mt. Geumjeong Granite, Busan (부산 금정산화강암체의 암석학 및 Rb-Sr 전암 등시선 연대)

  • Yun Sung-Hyo;Koh Jeong-Seon;Park Kwang-Sun;Ahn Hyo-Chan;Kim Young-Il;Yoo Sung-Hyeon;Lee Dong-Han;Yun Gi-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • The granitoids in the Mt. Geumjeong, Busan can be divided into granodiorite, hornblende granite, adamellite, tonalite, biotite granite and micrographic granite. The geochemical characteristics of the Mt. Geumjeong granites indicate that they were crystallized from a calc-alkaline series and that they belong to Ⅰ-type granitic rocks which evolved from granodioritic magma into hornblende granite, adamellite, biotitie granite, and finally micrographic granite through fractional crystallization of plagioclase. The crystallization pressures and temperatures of the minimum melt compositions of the granitic rocks were estimated to about 1∼5 kbar and 720∼700℃. The trace element composition and REE patterns, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate typical continental margin arc calc-alkaline rocks produced in the subduction environment. The Rb-Sr isotopic data for the Mt. Geumjeong granites define a well-defined isochron yielding as age of 69.6±1.9 Ma with an initial Sr isotopic ratio of 0.70503.

Geochemical Study of the Cretaceous Granitic Rocks in Yeosu Area (여수 지역에 분포하는 백악기 화강암류에 대한 지화학적 연구)

  • Wee, Soo-Meen;Kim, Eun-Hyo
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.267-281
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks are widely distributed in the southern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks of the Yeosu area were carried out in order to constrain the petrogenesis of the granitic rocks and to establish the paleotectonic environment of the southwestern part of the Korean peninsula. Igneous rocks of the Yeosu area consist of diorite, hornblende biotite pite and micrographic granite. Chondrite normalized REE patterns show generally enriched in LREE ($(La/Lu)^{cN}$=4.2-13.3). Diorites show flat to slight negative Eu anomalies while micrographic granites have strong negative Eu anomalies. The ${\Sigma}REE$ of the granites are 76.2-235 ppm, which corresponds to the range of the continental margin granite. Whole rock chemical data of the granitic rocks from the Yeosu area indicate that the rocks have characteristics of calc-alkaline series in the subalkaline field. On the A/NK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate.

Petrochemical Study of the Gadaeri Granite in Ulsan Area, Kyeongsang Province (경상남도 울산지역 가대리화강암에 대한 암석화학적 연구)

  • Choi, Seon-Gyu;Wee, Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.459-467
    • /
    • 1994
  • The Gadaeri granite near Ulsan mine is an oval-shape isolated granitic body, and is genetically related to the iron-tungsten mineralization. The Gadaeri granite exhibits calc-alkaline and I-type characteristics, and generally shows the micrographic texture which indicates the shallow depth of emplacement. Consideration of the stratigraphic thickness of Ulsan formation and minimum-melt compositions suggests that the bulk magma crystallized at pressure of 0.5~2.0 kbar under water saturated condition. The evolutionary trend observed in the studied rocks represents that feldspar fractional crystallization has been a major magmatic process at the Gadaeri granite pluton. Different chemical characteristics between the Gadaeri and the Masan-Kimhae granites cannot be explained by fractional crystallization or different degrees of partial melting, and it reflects that the magma source for Gadaeri granite was different from that of the Masan and Kimhae granites.

  • PDF

$\acute{E}$tude du Processus de Morphogen$\grave{e}$se de l'$\hat{I}$le Rocheuse de Baek dans la Ville de Yeosu en Cor$\acute{e}$edu Sud (여수시 백도의 지형형성과정에 대한 고찰)

  • Lee, Jeong Hun
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.627-640
    • /
    • 2013
  • Cette $\acute{e}$tude a pour objet d'analyser le processus de morphogen$\grave{e}$se de l'$\hat{I}$le rocheuse de Baek. Nous y voyons une cl$\acute{e}$ pour apprendre son relief marin et le processus de morphogen$\grave{e}$se des l'$\hat{I}$les m$\acute{e}$ridionales de Cor$\acute{e}$e du Sud. Le granit porphorique qui compose l'$\hat{I}$le rocheuse de Baek est une roche magmatique qui s'est form$\acute{e}$e il y a 60 million d'ann$\acute{e}$es. La cause principale de formation de l'$\hat{I}$le rocheuse de Baek, est une ligne de d$\acute{e}$lit vers le NE-SO et l'ENE-OSO, un soul$\grave{e}$vement de la plaque tectonique et une $\acute{e}$rosion par les vagues. L'$\hat{I}$le rocheuse de Baek pr$\acute{e}$sente un caract$\grave{e}$re d'$\acute{e}$ruption de magma de calc-alcalin par analyse g$\acute{e}$ochimique de son granit porphorique et fait partie du granit de l'arc volcanique. Il s'agit d'un magma qui s'est form$\acute{e}$ dans la subduction pr$\grave{e}$s du continent. Il est aussi n$\acute{e}$ssaire d'examiner un soul$\grave{e}$vement qui est plus $\acute{e}$lev$\acute{e}$ qu' un mouvement ascendant de la surface de la mer $\grave{a}$ l'$\grave{e}$re quaternaire environ de l'$\hat{I}$le rocheuse de Baek malgr$\acute{e}$ que, selon nous, nous y trouvions une faille et une terrasse marine.

  • PDF

Geochemistry of Granitic Rocks Around the Southern Part of the Yangsan Fault (양산단층 남부일원에 분포하는 화강암질암의 지화학적 연구)

  • Hwang Byoung-Hoon;Yang Kyounghee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.165-181
    • /
    • 2005
  • The granitic rocks distributed in the southern part of the Yangsan Fault are classified into five distinct rock facies based on the field relation, petrography and geochemical characteristics. These five different rock facies can be grouped into two considering their origins. Group I, which reveals various evidences of magma mixing, includes three rock facies of granodiorite, enclave-rich porphyritic granite, and enclave-poor porphyritic granite. Group H intruding Croup I includes equigranular granite and micrographic granite with no evidence of magma mixing. It is suggested that the distinctively different trace element and isotopic chemistries between group I and II, support evolution from the different parental magma. It is suggested that the three rock facies in group I were generated by different degrees of magma mixing in addition to fractionation of plagioclase. MMEs experienced fractionation of biotite. The two facies in group H seem to have been generated from different parent magma from group I and evolved by fractionation of K-feldspar. The Rb-Sr whole-rock ages of the group I rocks yield $59.2\~58.9Ma$, and those of the group II rocks give 53. $3\~51.7Ma$, regardless of their distribution whether they occur in the eastern or western parts of the Yangsan Fault. Based on Sm-Nd isotope compositions, depleted mantle model ages $(T_2DM)$ of the group I range $0.8\~0.9Ga$, while those of the group II$0.6\~0.7Ga$.