• 제목/요약/키워드: 미립분사가공

검색결과 9건 처리시간 0.024초

미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형 (Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting)

  • 박동삼;강대규;김정근
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Powder Blasting에 의한 미세 포켓의 기계적 에칭 (Mechanical Etching of Micro Pocket by Powder Blasting)

  • 박경호;오영탁;박동삼
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.219-226
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu$ m. This paper describes the performance of powder blasting technique in micro-pocketing of stainless steel and the effect of the number of nozzle scanning and the nozzle height on the depth and width of pockets. Experimental results showed that increasing the no. of nozzle scanning and decreasing the nozzle height resulted in the increase of depth and width in pockets. Increase of width results from wear of mask film.

가속도 센서용 파이렉스 유리의 미세가공 (Micromachining of Pyrex Class for Accelerometer)

  • 김광현;최영현;최종순;박동삼;유우식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu\textrm{m}$. This paper describes the performance of powder blasting technique in micromachining of pyrex for the accelerometer sensor and the effect of the number of nozzle scanning and the stand-off distance on the erosion depth.

  • PDF

유리의 경사 미립분사가공시 가공성 (Machinability in Oblique Powder Blasting of Glass)

  • 박동삼;서태일
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.28-34
    • /
    • 2004
  • The old technique of sandblasting which has been used for decoration of glass surface has recently been developed into a powder blasting technique for brittle materials such as glass, silicon and ceramics, capable of producing micro structures larger than 100${\mu}{\textrm}{m}$. In this study, we introduced oblique powder blasting, and investigated the effect of the impacting angle of particles, the scanning times and the stand-off distance on the surface roughness and the weight-loss rate of samples with no mask, and the wall profile and overetching of samples with different mask pattern in powder blasting of soda-lime glass. The varying parameters were the different impact angles between 50$^{\circ}$ and 90$^{\circ}$, scanning times of nozzle up to 40 and the stand-off distances 70mm and 100mm. The widths of mask pattern were 0.2mm, 0.5mm and 1mm. The powder was alumina sharp particles, WA #600. The mass flow rate of powder during the erosion test was fixed constant at 175g/min and the blasting pressure of powder at 0.2Mpa.

Powder Blasting 에 의한 유리의 미세 홈 가공시 노즐 주사횟수의 영향 (Effect of Nozzle Scanning in Micro Grooving of Glass by Powder Blasting)

  • 김광현;최종순;박동삼
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1280-1287
    • /
    • 2002
  • The old technique of sandblasting which has been used for decoration of glass surface has recently been developed into a powder blasting technique for brittle materials such as glass, silicon and ceramics, capable of producing micro structures larger than $100{\mu}$ m. This paper describes the performance of powder blasting technique in micro-line grooving of glass and the effect of the number of nozzle scanning on the depth and width of line groove. Experimental results showed that increasing the no. of nozzle scanning resulted in the increase of depth and width in grooves. Increase of width which may cause several problems in the precision machining results from wear of mask film. Therefore, well-controlled masking process is the most important factor for micro machining of glass with accuracy.

Micro Abrasive Jet Machining을 이용한 유리의 미세 홈 가공 (Micro Grooving of Glass Using Micro Abrasive Jet Machining)

  • 최종순;박경호;박동삼
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.178-183
    • /
    • 2001
  • Abrasive jet machining(AJM) process is similar to the sand blasting and effectively removes hard and brittle materials. AJM has applied to rough working such as debarring and rough finishing. As the need for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM is developed, and has become the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro grooving of glass. Diameter of hole and width of line in grooving is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro grooving of glass, but the size of machined groove increased about 2~4${\mu}{\textrm}{m}$. With the fine tuning of masking process and compensation of film wear. this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD.

  • PDF

Powder Blasting을 이용한 미세 포켓가공 (Micromachining of Pocket by Powder Blasting)

  • 박경호;최종순;김광현;박동삼
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1060-1063
    • /
    • 2001
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu$m. This paper describes the performance of powder blasting technique in micro-pocketing of stainless steel and the effect of the number of nozzle scanning and the nozzle height on the depth and width of pockets. Experimental results showed that increasing the no. of nozzle scanning and decreasing the nozzle height resulted in the increase of depth and width in pockets. Increase of width results from wear of mask film.

  • PDF

TFT-LCD의 도광판 패턴 사출성형용 금형가공 (Machining of the Inject Mould for Forming the Dot Pattern of LGP of TFT-LCD)

  • 박동삼;최영현;하민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1215-1219
    • /
    • 2003
  • Light Guide Panel(LGP) is a key part of backlight unit(BLU) which transforms line-light of lamp to surface-light. Dot pattern is formed on the injected LGP surface by screen printing. This dot pattern is composed of several ten thousands micro dots of diameter 150-180$\mu\textrm{m}$ or so. The dot patterning by screen printing causes low productivity and low performance of TFT-LCD. This research develops the micromachining technology for LGP mould which could form micro dot pattern by injection molding, removing the existing screen printing process.

  • PDF

중형급 하이드라진 추력기에 장착되는 비충돌형 인젝터의 수류시험 및 성능평가 (Water-flow Test/Performance Evaluation of Nonimpinging-type Injector used in the Hydrazine Thruster of Medium-level Thrust)

  • 정훈;김종현;김정수;김인태
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.139-142
    • /
    • 2011
  • 본 연구팀에서 개발 중인 하이드라진 추력기의 설계성능 검증에 앞서 요소부품인 비충돌형 인젝터에 대한 인수시험 및 수류시험을 수행하였다. 실험에 사용된 인젝터는 추진제 주입압력 24.6 $kg_f/cm^2$에서 70 N의 공칭추력을 내는 하이드라진 추력기에 장착되는 것이다. 각각의 인젝터 노즐 오리피스의 미세한 가공오차에 기인하여 미립화 특성 차이가 관찰되기는 하였으나, 인젝터 분사각 관련 성능평가에서는 모든 오리피스가 합격범위에 있음이 확인되었다.

  • PDF