• Title/Summary/Keyword: 미량 화학

Search Result 559, Processing Time 0.025 seconds

Petrogenesis of Plutonic Rocks in the Andong Batholith (안동저반 심성암류의 암석성인)

  • 황상구;장윤득;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.200-213
    • /
    • 2002
  • The Andong granitoid batholith represents five temporally distinct episodes (phases) of igneous activity. The batholith represents a plutonic complex of five pulsatively emplaced distinct intrusive multiphases. The petrochemical data show that the plutons fall into calc-alkaline series except for the Yean pluton, and plot within the diaenostic range for I-type origin and continental arc orogenic tectonic setting. Each pluton reveals systematic compositional variations of major and trace elements with $SiO_2$ or MgO, but different variation trends for some elements and considerably different REE patterns. Thus discontinuous, inconsistent variations in the elements indicate that the five plutons can not be explained by simple fractional crystallization from the same primary magma, but were intruded and solidified from the independent magmas of chemically heterogeneous origin. In the Andong, Dosan and Pungsan plutons, high values of molar CaO/(MgO+$FeO^{t}$ ) combined with low $Al_2$$O_3$/(MgO+$FeO^{t}$ ) and $K_2$O$Na_2$O ratios suggest a magma originated by dehydration melting of a metabasaltic to metatonalitic protolith. Whereas the Imha pluton show similar values of CaO/(MgO+$FeO^{t}$ ), but significantly higher ratios of $Al_2$$O_3$/(MgO+$FeO^{t}$ ) and $K_2$O$Na_2$O implying to a metagreywacke protolith.

Distributions and Pollution History of Heavy Metals in Nakdong Estuary Sediments (낙동강 하구역 퇴적물 중금속의 분포와 오염의 역사 추정)

  • Cho, Jin-Hyung;Park, Nam-Joon;Kim, Kee-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • In order to determine the horizontal and vertical distributions of metals and prospect the recent metal pollution history in Nakdong Estuary, we took surface and core sediments. Maximum value of organic matter occurs at the upstream site located 4 km from Nakdong barrage, and the concentration of trace metals (Zn, Cu, and Pb etc.) decrease seaward in the estuary. The sedimentation rates, based on $^{210}$Pb$_{ex}$ and $^{137}$Cs activities, were 0.34 cm/yr in inside of barrage (core 1) and 0.25 cm/yr in Changrim (core 4). Sediment mixing layer does not exist in core 1, where anoxic condition is known to be prevail. The topmost sediment layer of core 4 (<3.5 cm) is severely mixed. At sites 1 and 4, concentrations of Cu slowly increased during the period of 1920-1970, rapidly increased during 1970-1990, and followed by slight decrease after 1990. Zn contents increased in early 1960s and peaked in 1993, and followed by decrease after 1990s. Pb has increased continuously since early 1970s. At the downstream of the barrage, Cu and Zn have increased in the topmost layer. The trend of increase of Cu is evident after 1950 (11 cm in sediment depth). Overall trend of heavy metal concentration clearly indicates the pollution has been increasing after the construction of the barrage.

  • PDF

Interpretation on Making Techniques of Some Ancient Ceramic Artifacts from Midwestern Korean Peninsula: Preliminary Study (한반도 중서부 출토 일부 고대 세라믹 유물의 제작기술 해석: 예비 연구)

  • Lee, Chan Hee;Jin, Hong Ju;Choi, Ji Soo;Na, Geon Ju
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.273-291
    • /
    • 2016
  • Some ceramic artifacts representing time-wise from comb pattern pottery in the Neolithic Age to white porcelain in Joseon Dynasty were selected from 7 sites in the north and south area of Charyeong Mountain Range in order to making techniques interpretation and development process of ancient ceramics through physicochemical and mineralogical quantitative analysis. Studied pottery samples in the Prehistoric times showed trace of ring piling in soft-type, and pottery in the Three Kingdoms Period had both soft and hard-type but kettle-ware and storage-ware were made with ring piling, but table-ware was made by wheel spinning. Different from pottery after the Three Kingdom Period when refinement of source clay was high, pottery in the Neolithic Age and in the Bronze Age exhibited highly mineral content in sandy source clay, which showed a lot of larger temper than source clay. Groundmass of celadon and white porcelain almost did not reveal primary minerals but had high content of minerals by high temperature firing. Ceramic samples showed some different in major and minor elements according to sites irrespective of times. Geochemical behaviors are very similar indicating similar basic characteristics of source clay. However, loss-on-ignition showed 0.01 to 12.59wt.% range with a large deviation but it rapidly decreased moving from the Prehistoric times to the Three Kingdom Period. They have correlation with the weight loss due to firings, according to burning degree of source clay and detection of high temperature minerals, estimated firing temperatures are classified into 5 groups. Pottery in the Neolithic Age and in the Bronze Age belongs from 750 to $850^{\circ}C$ group; pottery in the Three Kingdom Period are variously found in 750 to $1,100^{\circ}C$ range of firing temperature; and it is believed celadon and white porcelain were baked in high temperature of 1,150 to $1,250^{\circ}C$. It seems difference between refinement of source clay and firing temperature based on production times resulted from change in raw material supply and firing method pursuant to development of production skill. However, there was difference in production methods even at the same period and it is thought that they were utilized according to use purpose and needs instead of evolved development simply to one direction.

Hydrothermal Synthesis of Kaolinite (캐올리나이트의 수열합성)

  • Jang, Young-Nam;Ryu, Gyoung-Won;Chae, Soo-Chun;Lee, Sung-Ki;Suh, Yong-Jae;Bae, In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • Kaolinite [$Al_2Si_2O_5(OH)_4$] was successfully synthesized by a hydrothermal process from amorphous $Al(OH)_3$ and $SiO_2$ at $230^{\circ}C$ under the pressure of $30 kg/cm^2$. The experiments were performed varying temperatures ($180{\sim}280^{\circ}C$), pressure ($10{\sim}60kg/cm^2$), chemistry ($Al_2O_3/SiO_2 = 0.5{\sim}0.38$) and pH ($0.3{\sim}9.5$) of the solution. The autoclaving was carried out in a closed stainless steel vessel. Kaolinite appears from the starting composition of $Al_2O_3/SiO_2= 0.5$ with boehmite and was stable as a single phase with the composition of $Al_2O_3/SiO_2=0.45$. Boehmite was a stable phase below $200^{\circ}C$ for the 240 h period of autoclaving, but kaolinite appeared even in 20 h at $230^{\circ}C$. The single kaolinite phase of a good crystallinity was observed at pH ranging 2 to 6. That indicates that pH is one of the most critical parameters for the successful formation of kaolinite. The optimal molar ratio of $Al_2O_3$ to $SiO_2$ was determined to be 0.45. The XRD pattern of the synthesized kaolinite coincided with that of natural one and its morphology was the cluster type of the kaolinite crystals (diameter = ${\sim}3{\mu}m$), irrespective of starting material, composition and temperature.

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

Chemical Composition of Prunus mume Flower Varieties and Drying Method (매화의 품종과 건조방법에 따른 화학성분 조성)

  • Kim Yong-Doo;Jeong Myung-Hwa;Koo I-Ran;Cho In-Kyung;Kwak Sang-Ho;Kim Bo-Eun;Kim Ki-Man
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Prunus mume is extensively cultivated as a fruit and medicinal plant in Korea. Recently, prunus mume has a pressing problem with an increase of prunus mume cultivation area in southern part in Korea. Chemical properties of prunus mume flower to determine the optimum processing varieties for tea were investigated. Three kinds of samples treated with fresh, freeze dry and shade dry were used. The content of moisture, crude ash, crude protein, crude fiber, crude fat and nitrogen free extract of prunus mume flower varieties were to $82{\sim}85%,\;0.2{\sim}0.6%,\;2.5{\sim}3.1%,\;2.5{\sim}3.1%,\;0.6{\sim}0.8%\;and\;10{\sim}11%$ respectively. The main component of free sugars in prunus mume flower was glucose and those of organic acids were citric and malic acids. 17 kinds of amino acids were determined from prunus mume flower. The total amino acid contents of Cheongchuk, Baeagaha and Goseong were 760.47 mg%, 624.01 mg% and 807.41 mg%, respectively. Aspartic acid, glutamic acid and lysine were the major component in 3 cultivars. The content of K was much higher than Ca, Mg, Na, fe and Zn. The major fatty acids of prunus mume flower were myristic acid, palmitoleic acid me oleic acid. As a result of analysis, there were no significant differences among the three cultivars of prunus mume flower and drying method.

Geochemical Characteristics of Precambrian, Jurassic and Cretaceous Granites in Korea (한국(韓國)에 분포(分布)하는 선(先)캠브리아기(紀), 쥬라기(紀) 및 백악기화강암(白堊紀花崗岩)의 지화학적(地化學的) 특징(特徵))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.35-60
    • /
    • 1987
  • The geochemical characteristics including minerals, major and trace elements chemistries of the Proterozoic, Jurassic and Cretaceous granites in Korea are systematically summarized and intended to decipher the origin and crystallization process in connection with the tectonic evolution. The granites in Korea are classified into three different ages of the granites with their own distinctive geochemical patterns: 1) Proterozoic granitoids; 2) Jurassic granites(cratonic and mobile belt); 3) Cretaceous-Tertiary granites. The Proterozoic granite gneisses (I-type and ilmenite-series) formed by metamorphism of the geochemically evolved granite protolith. The Proterozoic granites (S-type and ilmenite-series) produced by remobilization of sialic crust. The Jurassic granites (S-type and ilmenite-series) were mainly formed by partial melting of crustal materials, possibly metasedimentary rocks. The Cretaceous granites (I-type and magnetite-series) formed by fractional crystallization of parental magmas from the igneous protolith in the lower crust or upper mantle. The low temperature ($315{\sim}430^{\circ}C$) and small temperature variations (${\pm}20{\sim}30^{\circ}C$) in the cessation of exsolution of perthites for the Proterozoic and Jurassic granites might have been caused by slow cooling of the granites under regional metamorphic regime. The high ($520^{\circ}C$) and large temperature variations (${\pm}110^{\circ}C$) of perthites for the Cretaceous granites postulate that the rapid cooling of the granitic magma. In terms of the oxygen fugacity during the feldspar crystallization in the granite magmas, the Jurassic mobile belt granites were crystallized in the lowest oxygen fugacity condition among the Korean granites, whereas the Cretaceous granites in the Gyeongsang basin at the high oxygen fugacity condition. The Jurassic mobile belt granites are located at the Ogcheon Fold Belt, resulting by closing-collision situation such as compressional tectonic setting, and emplaced into a Kata-Mesozonal ductile crust. The Jurassic cratonic granites might be more evolved either during intrusion through thick crust or owing to lower degree of partial melting in comparison with the mobile belt granites. The Cretaceous granites are possibly comparable with a continental margin of Andinotype. Subduction of the Kula-Pacific ridge provided sufficient heat and water to trigger remelting at various subcrustal and lower crustal igneous protoliths.

  • PDF

The Production and Geochemistry of Evaporite from the Acid Mine Drainage (산성 광산배수로부터 형성되는 증발잔류광물의 생성량과 지구화학)

  • Park Cheon-Young;Cho Kap-Jin;Kim Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.524-540
    • /
    • 2005
  • This study has focused on the amount of evaporites and geochemical characteritics of evaporites from the acid mine drainage and on the variation of constituents in acid mine drainage during evaporation. The various colors of evaporites are frequently observed at the rock surfaces contacting acid mine drainage. In order to produce evaporites in the laboratory, acid mine drainages were sampled from the abandoned mine areas (GTa, GTb, GH and GB) and air-dried at room temperature. During the evaporation of acid mine drainages, TDS, EC values and the concentrations of major and minor ions increased, whereas ER and DO values decreased with time. The concentration of Fe increased gradually with evaporation time in the GTb and GB, whereas GH founded in one day but rapidly not detected in the other day after due to removal of Fe by formation-precipitation of amorphous Fe hydroxide. The amounts of the evaporites were produced in amounts of 4 g (GTa), 5 g (GB), 15 g (GH), and 24 g (GTb) from 4 liter of acid mine drainage after 80 days of the evaporation, respectively. In linear analysis from the products with the parameters which are the EC, TDS, salinity, ER, DO and pH contents in field, the determination coefficients were 0.98, 0.99, 0.98, 0.88, 0.89, and 0.25 respectively. If we measure the parameters in field, it would be easy to estimate the amount of evaporites in acid mine drainage. Gypsum and epsomite were identified in all of the evaporites by x-ray powder diffraction studies. Evaporite (GTb) was heated at 52, 65, 70, 95, 150, 250, and 350oC for one hour in electrical furnaces. Gypsum, $CaSO_4\cdot1/2H_2O$ and kieserite were identified in the heated evaporite by XRD. With increased heating temperature, the intensity of the peak at $7.66/AA$ (diagnostic peak of gypsum), the peak at 5.59A ($CaSO_4{\cdot}1/2H_2O)$ and the peak at $4.83{\AA}$ (kieserite) decreased in x-ray diffraction due to dehydration. In the SEM and EDS analysis for the evaporite, gypsum of well-crystallized, radiating cluster of fibrous, acicular, and columnar shapes were observed in all samples. Ca was not detected in the EDS analysis of the flower structures of GTb. Because of that, the evaporite with flower structures is thought to be eposmite.

A Study on the Mineralogical Characteristics and its Agricultural Use of Barley Stone (Diabase Porphyrite) (맥반석(麥飯石)(휘록분암)에 대(對)한 광물학적(鑛物學的) 특성(特性)과 농업적(農業的) 활용(活用) 가능성(可能性)에 관(關)한 연구(硏究))

  • Choi, Dae-Ung;Jung, Pil-Kyun;Um, Ki-Tae;Park, No-Kwon;Park, Seon-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.199-204
    • /
    • 1987
  • This study was conducted to verify the identity and the effects on soil improvements by the application of Barley stone which has been recently named as miraculous mineral on account of being propagandized as health stone because of several special effect of medicine, the supplement of micronutrients for agriculture, prevention against diseases and insects of plant, and the increase of nutrient holding capacity of soil. The results were summarized as follows; 1. Barley stone is considered as Diabase Porphyrite by the analysis of X-ray Diffraction, chemical composition and microspore's observation. This mineral stone called as Barley stone has been deducted because of being seen as if the feature was attatched with cooked barley and appearently scattered about feldspar's phenocryst on the dark-green stone base. 2. In chemical characteristics of barley stone, the pH 8.7 was higher but C.E.C. 9.0 me/100g was lower then those of other clay minerals such as Bentonite and Zeolite, and so barley stone material was not considered suitable for improvement of sandy loam soil. 3. Effects of Bentonite and Zeolite application on yield of paddy rice were 108-109% compare to non-treated plot, but Barley stone has not increased rice yield. Notwithstanding the increase of application of barely stone to 5 ton per 10a, the yield increase was not significantly showing only 102-103% and the effects of Peanut, hot pepper and chinese cabbage were not recognized either.

  • PDF

Comparison of Soil Nutrient Status in Conventional and Organic Apple Farm (관행농 및 유기농 사과과수원 토양의 양분함량 비교)

  • Chung, Jong-Bae;Lee, Yoon-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • Soil nutrient status in an organic apple farm was evaluated in relation to a conventional farm to better understand the effects of organic farming system on soil fertility. Soil organic matter, total and mineral N, available P, exchangeable cations, and available micronutrients were monitored at depth of 5-20 cm from May to October in 2006. Average soil organic matter content was 63.3 and $31.0g\;kg^{-1}$ in organic and conventional farm, respectively. Total N content was 3.3 and $1.7g\;kg^{-1}$ in average for organic and conventional farm, respectively. Ammonium and nitrate N in organic farming were maintained at relatively stable levels, but in the conventional farm the levels were very high in early season due to the chemical fertilizer application. In the organic apple farm, available P content in May was lower than that found in the conventional farm, but during the growing season available P content was continuously increased and in August the content was more than $1000mg\;P_2O_5\;kg^{-1}$. The organic farm maintained relatively greater exchangeable K, Ca, and Mg levels than the conventional farm. Available Cu, Fe, and Mn contents in the conventional farm were relatively greater than those found in the organic farm. However, available Zn extracted in 0.1 M HCl was much greater in the organic farm. Nutrient levels above crop needs were observed in both conventional and organic apple farm suggesting a more appropriate management of soil nutrients in organic farming to secure its fundamental functions for the sustainable agriculture.