• Title/Summary/Keyword: 물 수직운동

Search Result 67, Processing Time 0.024 seconds

Numerical Computations on Hydroelastic Response of a Vertical Cylinder in Extreme Wave Loads (유탄성 응답을 고려한 수직 실린더에 작용하는 극한파의 파랑하중 수치해석)

  • Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.21-27
    • /
    • 2007
  • The wave load and its influence on the response of offshore structure have been well investigated through the statistical approach based on the linear theory. The linear approach has a limitation to apply the extreme condition such as extreme wave, which corresponds to extreme value of wave spectrum. The main topic of present study is to develop an efficient numerical method to predict wave load induced by extreme wave. As a numerical method, finite element method based on variational principle is adopted. The frequency-focusing method is applied to generate the extreme wave in the numerical wave tank. The wave load on the bottom mounted vertical cylinder is investigated. The hydroelastic response of the vertical cylinder is also investigated so as to compare the wave loads with the rigid body case in the extreme wave condition.

Basemat Uplifting Effects on Seismic Response of Soil-Structure Interaction System (기초의 부분적 들림이 지반-구조물상호작용 시스템의 지진응답에 미치는 영향)

  • Joe, Yang Hee;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 1990
  • An analytical procedure is proposed for the seismic analysis of a soil-structure interaction system with besemat uplift, including the effects of concurrent vertical seismic ground motion, nonlinear distribution of bearing soil pressure under the basemat, and 3-dimensional behavior of the system. The soil-structure interaction system is assumed to have rectangular-shaped basemat on elastic half-space. Nonlinearity of soil spring constants and soil damping coefficients induced by the base mat uplift is modeled by considering not only the reduction of contact area between soil and structure but also the effects of rigid body rotational motion of the superstructure, and the shift in the point of action of the resultant reaction on the basemat. Throught various parametric studies. it has been confirmed that the seismic responses of the superstructure reduce notably while response at the basemat increases considerably. The results also show that the effects of concurrent vertical ground motion. nonlinear soil pressure distribution under basemat, and 3-dimensional behavior of the system shall be included in uplift analysis in order to obtain the correct structural responses.

  • PDF

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF

Full mouth rehabilitation in a patient with reduced vertical dimension due to numerous tooth loss and excessie worn dentition: A case report (다수의 치아 상실과 치아 마모로 인해 수직고경이 감소된 환자의 완전 구강 회복 증례)

  • Lee, Eun-Hyuk;Lim, Young-Jun;Kwon, Ho-Beom;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.456-466
    • /
    • 2019
  • As digital dentistry technology is being developed, it is being used in various ways. This case covers how digital dentistry technology is being applied on the treatment of patients with loss of vertical dimension due to worn dentition and multiple loss of teeth. The loss of vertical dimension was carefully assessed and recovered, and implants were placed with surgical guides, designed considering the final restoration. The movement of the mandibular was measured with the electronic instrument for recording mandibular movement. Wax-up process was done with Naturgemäße Aufwachs-Technik (N.A.T.) and Natural functional reconstruction (N.F.R.). It was scanned, and the provisional restoration was fabricated using Computer-Aided-Design/Computer-Aided-Manufacturing (CAD/CAM) technology, and the adjustment process was done at the clinic to meet with the satisfaction both functionally and esthetically, and then, using double scanning and CAD/CAM technology, it was carried out as a final restoration. As a result, the patient obtained satisfying results, utilizing the benefits of digital dentistry technology and traditional methods.

The Experimental Study about Kinetic Change of Water Surface in the Chambers for Wave Energy Converter (파력발전용 수조실의 수면 운동 변화에 대한 실험적 연구)

  • Hadano, Kesayoshi;Moon, Byung-Young;Lee, Seong-Beom;Kim, Kwang-Jung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Experimental results are given for the vertical motion of water in the water chambers for wave energy converter aligned along the wave propagation direction in order to avoid the impulsive wave forces. This paper mainly focuses on the property of the amplitude of the vertical motion of the water surface in the chambers. The amplification has been investigated by dimensionless parameters of wave period to resonance period ratio of the U-shaped oscillation, $T/T_r$, chamber size to wave length ratio, l/L, water depth to wave length ratio, h/L, amplitude of up-down motion of water particles to draft of the front wall ratio, ${\zeta}/D$. It has been shown that l/L should be less than 0.1 and as $T/T_r$ approaches unity the up-down of the water in the chambers is amplified. Also, the structure of the walls which form th water chambers has been examined roughly. It is deduced that the chambers set on both sides of the hull of a single-point moored floating vessel is preferable to those set along a fixed structure such as breakwaters.

Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water (차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성)

  • 황영규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

Mathematical Modelling of Tides and Surges in the East China Sea (동지나해의 조석 및 해일 수치모델)

  • 최병호
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.221-236
    • /
    • 1983
  • In semi-enclosed shallow sea areas typified by the Yellow sea and the East China Sea, currents and sea surface variations are predominantly tidal. During the recent years two-dimensional numerical hydrodynamic model of the Yellow Sea and the East China Sea has been developed, based on the vertically-integrated equations of motion and continuity, capable of reproducing amplitudes and phases of the principal components of tides to satisfiable accuracy. As a subsequent development a three-dimensional hydrodynamical nymerical model covering the Yellow Sea and the East China Sea has been formulated to investigate the vertical distribution of horizontal tidal current and the response of the continented to investigate the vertical distribution of horizontal tidal current and the response of the continental shelf sea to steady uniform wind stress field imposed over the surface. Features of the M2 tidal current and the wind-induced three-dimensional current structure determined from the computation have been examined and discussed.

  • PDF

Full-mouth rehabilitation of severely attrited dentition with missing posterior teeth: a case report using digital workflow with jaw motion tracking (심한 교모와 구치부 상실을 보이는 환자의 전악 수복: Jaw motion tracking과 digital workflow를 활용한 증례 보고)

  • Chan Young Park;Younghoo Lee;Seoung-Jin Hong;Janghyun Paek;Kwantae Noh;Ahran Pae;Hyeong-Seob Kim;Kung-Rock Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.293-307
    • /
    • 2023
  • Jaw motion tracking, which is introduced in recent case reports, is a method which records the patient's individualized pathway of the mandibular movements along with facebow transfer, and reproduces the information in the virtual space of computer-aided-design/computer-aided-manufacturing (CAD-CAM) software. In this present case, a collapse of the occlusal plane was observed, due the loss of posterior teeth for a long period. Full-mouth rehabilitation with an increase in the occlusal vertical dimension was planned. First, the patient's mandibular movements were recorded on the newly established jaw relation by jaw tracking, and this information was assembled with the patient's intraoral data to create a virtual patient. Implant planning and diagnostic wax-up was done on the virtual patient, leading the fabrication of the provisional prosthesis. On the newly established jaw relation with an increase in the occlusal vertical dimension, canine guidance of the provisional prosthesis was checked. Finally, the provisional prosthesis was carried out to the definitive prosthesis. Using the advantages of the technologies in the digital dentistry, the patient was satisfied with the function and the esthetics after the treatment.

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures (구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소)

  • Kim, Ki Du;Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.447-455
    • /
    • 2006
  • A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

A Three-Dimensional Numerical Model of Hydrodynamic Flow on σ-Coordinate (연직변환좌표(鉛直變換座標)에서 3차원(次元) 유동(流動) 수직모형(數値模型))

  • Jung, Tae Sung;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1145-1158
    • /
    • 1994
  • A three-dimensional, finite difference, numerical model with free surface was developed on ${\sigma}$-coordinate. A semi-implicit numerical scheme in time has been adopted for computational efficiency. The scheme is essentially independent of the stringent stability criteria (CFL condition) for explicit schemes of external surface gravity wave. Implicit algorithm was applied for vertical shear stress, Coriolis force and pressure gradient terms. The reliability of the model with vertically variable grid system was checked by the comparison of simulation results with analytic solution of wind-driven currents in a one-dimensional channel. Sensitivity analysis of differencing parameters was carried out by applying the model to the calculation of wind-driven currents in a square lake.

  • PDF